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1 Introduction

According to a long-standing conjecture in model theory, simple groups of finite Morley rank
should be algebraic. The present paper is part of a series aimed ultimately at proving the
following:

Conjecture 1 (Even Type Conjecture) Let G be a simple group of finite Morley rank of
even type, with no infinite definable simple section of degenerate type. Then G is algebraic.

An infinite simple group G of finite Morley rank is said to be of even type if its Sylow 2-
subgroups are infinite and of bounded exponent. It is of degenerate type if its Sylow 2-subgroups
are finite. If the main conjecture is correct, then there should be no groups of degenerate type.
So the flavor of the Even Type Conjecture 1s that the classification in the even type case reduces
to an extended Feit-Thompson Theorem. Those who are skeptical about the main conjecture
would expect degenerate type groups to exist. The Even Type Conjecture confirms that this is
the heart of the matter.

We believe that it is realistic to aim at a proof of the Even Type Conjecture with existing
tools. In the present paper we obtain the following results:

Theorem 3.4 (Pushing Up)

Let G be a simple K*-group of finite Morley rank and of even type, Q) a unipotent 2-subgroup
of G such that Q@ = O2(N°(Q)), with B(N°(Q)/Q) ~ SL2(K) for some algebraically closed field
K of characteristic 2. Then N°(Q) contains a Sylow® 2-subgroup of G.

Theorem 3.5 (C(G,T))
Let G be a simple K*-group of finite Morley rank of even type with T a Sylow® 2-subgroup.
If C(G,T) < G then G has a weakly embedded subgroup.

The precise meaning of these results, and the relevant general definitions; will be given in
the next section. They are natural analogs of results in finite group theory which were useful in
the classification of the finite simple groups. In our context we view them as preparatory to an
analysis of a minimal counterexample by the method of amalgams.

The key to all the results of the present paper is the following analog of a result of Baumann:

Theorem 3.2 part 1 (Baumann, [8])

Let G be a group of finite Morley rank of even type. Let M be a definable connected subgroup
of G such that M = M/O2(M) = SLy(K) with K an algebraically closed field of characteristic
2. Assume that F*(M) = Oo(M). If S is a Sylow 2-subgroup of M then it contains a nontrivial
definable connected subgroup which is normal in M and Ng°(S).

Stellmacher showed in [27] that this result, or more exactly the structural analysis needed
for this result, can be carried out by the “amalgam” method (cf. [15]), which by its nature goes
over quite smoothly to our context. The proof of our analog of Stellmacher’s theorem, which
follows [27], is given in an Appendix, the main point being that certain issues of connectivity do
not disrupt the argument significantly. In addition, a result of Timmesfeld ([29]) is very helpful
as there 1s no general represention theory for representations of SLy of finite Morley rank.

The present paper is a sequel to [2, 20, 1, 3, 21, 4]; its results will be exploited in [10] to
eliminate certain components in “parabolic subgroups” which are the main obstruction to un-
dertaking a classification of even type groups (under a K*-hypothesis) via the amalgam method.
All we need from previous papers in the series are the main results of [21] and [4], reviewed in
the next section. Modulo standard group theoretic facts and some general properties of groups
of finite Morley rank the present paper 1s self-contained.



2 Preliminaries

In this section we will review the main facts required for the present paper. We use some of
the basic facts and notions as given in [11] without explicit reference, but the more substantial
points are all given explicitly below. We have included a first subsection on some basic model
theoretic notions which are used in this paper. We hope that this will provide some background
for the reader who wants to concentrate on the group theoretic aspects of the paper. The four
subsections which follow the first one review some of the general theory of groups of finite Morley
rank, while the last four address more specialized topics directly related to the concerns of the
present paper.

2.1 Model theory

In model theory, one studies various structures by means of their definable subsets. Although the
model theoretic definition of a structure corresponds to what a mathematician intuitively has in
mind, it 1s appropriate to define it rigorously. A structure consists of an underlying set, called the
universe, together with an indexed family of distinguished elements of the universe, an indexed
family of relations on the universe, and an indexed family of functions with domain a cartesian
power of the universe and range contained in the universe. Thus one can think of a group as a
structure where the underlying set is the set of the elements of the given group together with
a distinguished binary function, namely the group multiplication, and a constant, namely the
identity of the group. Evidently this is not the only way to consider a group as a structure; we
could include the inverse function as part of the group structure. In the first version, a group is
given by its multiplicative structure (this is the point of view normally adopted when defining
homomorphisms), while in the second version the inverse function is part of the structure as well
(this is the point of view normally adopted when defining subgroups). In the long run one may
switch freely between the various points of view available, but when setting up the foundations
of model theory, it is convenient to work with structures of a definite type.

More substantial inclusions to a structure can be done in special cases. As an example, one
can add to the structure consisting of the set of real numbers together with addition a unary
relation denoting the positive numbers. This would be an example of a group with additional
structure. In model theory the word group is generally used in this more general sense.

The signature of a structure consists of the three index sets involved, together with a function
which specifies for each index ¢ corresponding to a relation or function, the number of variables
involved in the corresponding relation or function, its arity. With a class of structures with
a fixed signature one can associate a first-order language. A first order language £ is a set of
symbols together with some rules which distinguish the strings of symbols which are acceptable
from those which are not. The symbols can be divided into three categories: those which name
the elements of the common signature; the logical symbols, i.e. equality (=), negation (),
disjunction (V), conjunction (A), the universal quantifier V, the existential quantifier 3; the
variables. There are two main rules: no infinite conjunctions or disjunctions are allowed, and
only variables are quantified. With these symbols and rules one can write first-order formulas
(i.e. acceptable strings of symbols). The structures associated with a fixed first-order language
L are called L-structures.

An example of a language is that of monoids: £ = {.,1}. Here . denotes the binary multipli-
cation function while 1 denotes the identity in the structure. One can expand this language to
L1 ={, 7! 1} where ~!isa symbol for the unary inversion function. This richer language
can be seen as that of groups. The following example is a first-order formula in the language
of monoids (or groups) which express the property of being central: Yz (y.x = z.y). In other
words in a structure corresponding to this language (i.e. a monoid), any element satisfying this
first-order formula would be central in the structure containing it. This is a definition for the
central elements of a group.

In general a set S is said to be definable in an L-structure M if S C M"™, where M denotes
the underlying set of M, and the elements of S are exactly those which satisfy a given first-order



formula in the language £. The above example shows that the center of a group is a definable
set.

It 1s also possible to extend the language £ by adding constant symbols which name elements
of a fixed L-structure. These are called parameters. The expansion of a language through the
addition of parameters (or any expansion in general) can eventually allow more sets to become
definable. An important example of this in the case of groups is the centralizer of a group
element. If we restrict the language to that of groups then there is no reason why centralizers of
elements should be definable but if g is a group element and one adds a constant symbol ¢, to
the language to name g, then x.c; = c4.x is a first-order formula which defines the centralizer
of g.

It is useful to note that a certain set can have more than one definition. For example if the
group SLs(C) is seen as an L-structure with £ = {., ~1 1}, then Z(SL2(C)) is also defined by
the formula .2 = 1. If K is a field of characteristic 2 and B(K') denotes the group of 2 x 2 upper
triangular matrices over K with determinant 1, then the centralizer of a nontrivial unipotent
element can either be defined using an additional parameter naming this element, or just by the
formula z. = 1.

Once the notion of a definable set is established one can define definable relations and func-
tions in the natural way: those relations or functions whose graphs are definable sets in the given
structure. A well-known example of this is the equivalence relation of being in the same coset
of a definable subgroup. The corresponding coset space is in fact an example of an important
notion in model theory: an interpretable set. If M is an L-structure then a set is said to be
interpretable in M if it is obtained from a set definable in M after factoring out a definable
equivalence relation.

On some structures it is possible to introduce a rank function rk from the set of sets inter-
pretable in the given structure to the set of natural numbers which satisfies the following four
axioms:

A Tf A is an interpretable set, then rk (A) > n+ 1 if and only if there are infinitely many
pairwise disjoint, nonempty, interpretable subsets of A whose ranks are at least n.

B If f is an interpretable function from A into B, then for each n € N, the set {b € B :
rtk (f~1(b)) = n} is interpretable.

C If f 1s an interpretable function from A onto B whose fibers have all the same rank n, then

rk (A) =rk (B) + n.

D If f is an interpretable function from A into B then there is an integer m such that for any
b € B, the set f=1(b) has infinitely many elements as soon as it has at least m elements.

A structure which admits such a rank function is said to be a ranked structure. It is worth
emphasizing that a ranked structure is not necessarily what is known as a structure of finite
Morley rank in model theory. The above axiomatization (more precisely axioms A,B,C in some
form) was introduced by the second author in order to concentrate on the algebraic properties of
groups of finite Morley rank. Later Bruno Poizat made the necessary organization of the axioms
and proved the equivalence of the notion of a ranked group (here the word group is taken in the
more general model theoretic sense mentioned above) and that of a group of finite Morley rank
([25], Corollaire 2.14 and Théoreme 2.15).

By a theorem of Macintyre ([23]), fields of finite Morley rank are algebraically closed. As for
groups, finite groups are of Morley rank 0. In this article are studied the infinite ones of which
algebraic groups over algebraically closed fields form one of the most important classes. Indeed
the only known infinite simple groups of finite Morley rank are simple algebraic groups over
algebraically closed fields, which gave rise to the conjecture in the introduction of this article.

Admitting Morley rank is a very strong condition on a group, which is inherited by its defin-
able subgroups. Since the natural numbers are well-ordered, one cannot have infinite descending
chains of definable subgroups (the descending chain condition). This allows one to define a ro-
bust notion of connected component of a group G of finite Morley rank: the intersection of the



definable subgroups of finite index. This intersection, denoted by G°, is definable thanks to the
descending chain condition. It is exactly the smallest definable subgroup of finite index in G.
The descending chain condition allows one to define also the definable closure of an arbitrary
subset X of (G. Denoted by d(X), this is the intersection of the definable subgroups of GG which
contain X. Again this is a well-defined and definable intersection. As a result one can talk about
the connected component of an arbitrary subgroup H of G: H° is defined as H Nd(H)°.

Before finishing this review of relevant model theory, it is worth emphasizing that the above
axiomatization of Morley rank in the context of groups has a very practical value in that the
rank function is a useful computational tool. An illustration of this phenomenon is the following
rank equality when G is a group of finite Morley rank and H 1s a definable subgroup:

tk (G) =tk (G/H) +rk (H).

2.2 Generalities

The following two statements are the corollaries of Zil’ber’s Indecomposability Theorem which
we will need in the paper.

Fact 2.1 ([11], Corollaries 5.28 and 5.29) Let G be a group of finite Morley rank

1. If H is a definable connected subgroup of G and X is any subset in G then [H,X] is
definable and connected.

2. The subgroup of G generated by any family of definable connected subgroups is again de-
finable and connected, and it is the setwise product of finitely many of them.

The following corollary will be useful in the appendix.

Corollary 2.2 Let G be a group of finite Morley rank and A and B definable subgroups. If A
is also connected then (A, B) is a definable subgroup of G.

Proof. Note that (A, B) = (A°: b € B)B. Since (A’ : b € B) is definable by Fact 2.1 2, (A, B)
is also definable. O

The following definition contains some fundamental terminology which is used frequently in
this paper and in many papers related to the classification project of which this paper 1s part.

Definition 2.3 1. A section of a group G is a quotient of the form H/K where H and K
are subgroups of G and K < H. Such a section is said to be definable if H and K are
definable.

2. A K-group s a group G of finite Morley rank such that every infinite definable simple
section of G s isomorphic to an algebraic group over an algebraically closed field.

3. A K*-group is a group G of finite Morley rank such that every infinite proper definable
stmple section of G is isomorphic to an algebraic group over an algebraically closed field.
Equivalently, G s either a K-group, or a simple group all of whose definable subgroups are
K-groups. As we are concerned here with techniques relevant to an inductive proof of the
FEven Type Conjecture, we confine ourselves in practice to the study of simple K*-groups
of even type.

2.3 Sylow theory

There is a good Sylow theory for the prime 2 in our context:

Fact 2.4 ([12]) 1. The Sylow 2-subgroups of a group of finite Morley rank are conjugate.



2. If S 1s a Sylow 2-subgroup of a group of finite Morley rank then S is nilpotent-by-finite and
its connected component is the central product of a definable, connected, nilpotent subgroup
of bounded exponent and a divisible, abelian 2-group. Moreover, these two subgroups are
uniquely determined.

This provides a rather good analog to the general structure of the connected component of
a Sylow 2-subgroup in an algebraic group, where depending on the characteristic we may be
dealing with a maximal unipotent subgroup, or the 2-torsion in a torus (semisimple elements).
Accordingly we adopt the terminology suggested by the algebraic case:

Definition 2.5 1. A unipotent subgroup ts a connected definable subgroup of bounded expo-
nent (in our context, typically a 2-group and hence nilpotent by Fact 2.4).

2. A torus s a definable divisible abelian group. For any prime p, a p-torus is a divisible
abelian p-group. (A nontrivial p-torus is not definable, but its definable closure is a torus.)

3. A group of finite Morley rank is of even type if the connected component of a Sylow 2-
subgroup is unipotent and nontrivial.

4. A group of finite Morley rank 1s of odd type if the connected component of a Sylow 2-
subgroup is a nontrivial 2-torus.

5. A group of finite Morley rank is of mixed type if the connected component of a Sylow 2-
subgroup is the central product of a nontrivial unipotent subgroup and a nontrivial 2-torus.

6. A group of finite Morley rank is of degenerate type if the connected component of a Sylow
2-subgroup is trivial (that is, the Sylow 2-subgroups are finite).

The conjecture i1s that degenerate type and mixed type do not arise. The nonexistence of
infinite simple groups of finite Morley rank of degenerate type would be a strong form of Feit-
Thompson for this context. This is by far the hardest case to deal with. On the other hand the
mixed type case can be eliminated a priori when working inductively:

Fact 2.6 ([20]) A simple K*-group of finite Morley rank ts not of mized type.

Definition 2.7 Let H be a group of finite Morley rank.
1. The connected components of Sylow 2-subgroups are called Sylow® 2-subgroups.

2. B(H) denotes the subgroup generated by the unipotent 2-subgroups of H. (B(H) is con-
nected by Fact 2.1 2).

3. A subgroup of H is called a 2+ -group if it contains no elements of order 2.

Fact 2.8 ([3], Proposition 3.4) Let G = GT be a connected K -group of even type with G and
T definable and connected. Assume that T is a 2*-group which acts on G definably. Then T
leaves wnvariant a Sylow® 2-subgroup of G.

Corollary 2.9 Let G be a connected K*-group of even type and T < G a torus. If U s a
T-invariant nontrivial unipotent 2-subgroup of G then U is contained in a T-invariant Sylow®
2-subgroup of G.

Proof. We consider N°(U) with U a maximal nontrivial 7-invariant unipotent 2-subgroup.
Then N°(U)/U is a K-group to which we can apply Fact 2.8 and the normalizer condition if U
is not a Sylow® 2-subgroup of G in order to get a contradiction. O



2.4 Weak embedding

Definition 2.10 Let G be a group of finite Morley rank. A proper definable subgroup M of G
15 said to be weakly embedded if it satisfies the following conditions:

(1) Any Sylow 2-subgroup of M is infinite.
(i¢) For any g € G\ M, M N M9 has finite Sylow 2-subgroups.
Jaligot has proved the following classification theorem:

Fact 2.11 ([21]) Let G be a simple K*-group of finite Morley rank and of even type, with a
weakly embedded subgroup. Then G is of the form SLa(K) for some algebraically closed field K
of characteristic 2.

This yields:

Fact 2.12 ([3], Proposition 2.33; [2], Proposition 5.21; [20], Fact 3.9) Let G be a K*-
group of finite Morley rank of even type and let T(G) be the graph whose vertices are the unipotent
2-subgroups of G, with edges between any two distinct subgroups with wnfinite intersection. If
T'(G) is disconnected then B(G) ~ SLa(K) for some algebraically closed field K of characteristic
2.

Proof. We may assume G = B(() and in particular G is connected. By the definition of a
K*-group either G is a K-group or a simple group. If it is a K-group then Proposition 5.21 in
[2] and Fact 3.9 in [20] prove the statement. If it is a simple group then the arguments used
to prove Proposition 2.33 in [3] show that the stabilizer of a connected component of T'(G) is
weakly embedded in G. Then Fact 2.11 yields the stated identification. O

Corollary 2.13 Let G be a K*-group of finite Morley rank of even type and let T*(G) be the
graph whose vertices are the Sylow® 2-subgroups of G, with edges between any two distinct Sylow®
2-subgroups with infinite intersection. If T*(G) is disconnected then B(G) ~ SLy(K) for some
algebraically closed field K of characteristic 2.

Proof. If two vertices S, T of T*(() are joined by a path in T'(G), then extending each vertex
along that path to a vertex of I'*((), we see that .S and 7' lie in the same connected component
of T*((G). O
Definition 2.14 Let G be a group of finite Morley rank.

1. A 2-local subgroup of G is the normalizer of a nontrivial definable 2-subgroup of G.

2. O(G) is the largest connected definable normal 2+ -subgroup of G.

3. O3(G) is the largest normal 2-subgroup of G. If G is of even type, this is definable and
nilpotent.

The following result was proved in [3] though stated somewhat differently; our formulation
comes from [4].

Fact 2.15 ([3]) Let G be a simple K*-group of finite Morley rank of even type and H a 2-local
subgroup of G with O(H) # 1. Then G has a weakly embedded subgroup.

Since the stated configuration does not occur in groups of the form SLy(K), by Jaligot’s
classification theorem we have:

Corollary 2.16 Let G be a simple K*-group of finite Morley rank of even type and H a 2-local
subgroup of G. Then O(H) = 1.



2.5 Miscellany

Definition 2.17 Let G be a group of finite Morley rank of even type. E(G) denotes the sub-
group generated by the definable subnormal quasisimple (i.e., perfect and simple modulo center)
subgroups of G. This is a finite central product of quasisimple groups; we are more wnterested in
E°((G), the subgroup generated by the connected subnormal quasisimple subgroups of G.

Note E°(G) C B(G). In addition E°(G) is a central product of connected definable qua-
sisimple subgroups ([24]). If G is connected then E(G) = E°(G).

Definition 2.18 Let P be a nilpotent p-group of bounded exponent. Then the Frattini subgroup
O(P) is the subgroup generated by P' and {z? : ® € P}. In the context of groups of finite Morley
rank, if P is definable then ®(P) is definable since on the one hand P’ is definable, and on the
other hand ®(P)/ P’ is clearly definable in the quotient.

O! and ©; will have their usual group-theoretic meaning: if P is a p-group then U'(P) =
g g g
(xP :xz € PYand Q(P) =(x € P:al =1).

Fact 2.19 Let N be a definable connected nilpotent p-group of bounded exponent. Then ®(N)
1s definable and connected.

Proof. N’ is connected (Fact 2.1 1), and ®(N)/N' = OY(N/N'). O

As usual, for any group G of finite Morley rank we write o(G) for the solvable radical of G,
the largest normal solvable subgroup of GG. It i1s definable and generated by the normal solvable
subgroups of G (Theorem 7.3 in [11]).

Fact 2.20 ([1]) Let GG be a connected nonsolvable K -group of finite Morley rank. Then G /o (G)
15 isomorphic to a direct sum of sitmple algebraic groups over algebraically closed fields. In
particular the definable connected 2+ -sections of G are solvable.

Fact 2.21 ([4]) Let H be a connected K-group of finite Morley rank of even type such that
Oo(H) = 1. Then H = O(H) % E(H).

Fact 2.22 ([5]) Let G be a perfect group of finite Morley rank such that G/7Z(G) is a simple
algebraic group. Then G is an algebraic group. In particular, 7Z(G) is finite ([19] Section 27.5).

Corollary 2.23 If G is a K-group of finite Morley rank then Z(E(G)) is finite.

Fact 2.24 ([4]) Let L be a K-group of even type with L = Ly X ...x L;, where the L; are simple
algebraic groups. If X 1s a definable simple subgroup of L normalized by a Sylow 2-subgroup of
L then X = L; for some 1.

We will apply this in the case in which L is a central product of quasisimple algebraic groups,
and K is quasisimple, but this amounts to the same thing.

Fact 2.25 ([4]) Let H be a connected K-group of finite Morley rank and even type, and L a
definable quasisimple subgroup of H such that N°(L) contains a Sylow® 2-subgroup of H. Then
LaH.

Proof. Let S < N°(L) be a Sylow® 2-subgroup of H. Let H = H/Os(H). By Fact 2.21
H = E(H) * O(H) and by Fact 2.24, or the remark following, L is normal in F(H) and hence
in /. In terms of H we have LO2(H) <1 H. But O9(H) < Sso [L,09(H)] < LNO(H) < Z(L)
as L is quasisimple. As L is perfect, [L,O2(H)] = 1 by the three subgroups lemma. Thus
L=E(LOs(H)) < H. O

Fact 2.26 Let H be a connected K-group of even type. Then Oz(H) is connected.

Proof. By Fact 2.20 and Fact 2.22 H/c°(H) is a central product of algebraic groups over
algebraically closed fields of characteristic 2, hence the problem reduces to the case in which H
is solvable and connected. In this case it is given in [11], Theorem 9.29. O



2.6 Borel-Tits

Fact 2.27 ([9], cf. [19], Corollary 30.3 A) Let G be a reductive algebraic group and let U be
a closed unipotent subgroup of G. Then Ng(U) is contained in a parabolic subgroup P(U) of G
such that U < Ry (P(U)), where Ry denotes the unipotent radical.

Lemma 2.28 Let X be a K-group of even type and Y a definable connected subgroup of X such
that Y = N3 (O2(Y)). Then'Y contains a Sylow® 2-subgroup of X.

Proof. We may suppose that X is connected. We set @ = O3(Y). By Fact 2.26, @ and
02(X) are connected. The subgroup Q@O2(X) is a connected 2-subgroup, hence nilpotent. Thus
No,(x)°(Q) is nontrivial. As this group is normalized by Y, it is a subgroup of ¢. Hence,
Ngo,(x)(@) = @ and thus O2(X) < Q. Thus we may factor out O2(X) and assume that
02(X) = 1. By Fact 2.21, X = E(X) « O(X). We may therefore assume that X = F(X).

As Q = 02(QZ(X)), Nx(QZ(X)) = Y and hence we may pass to X = X/Z(X), a direct
product of simple algebraic groups over algebraically closed fields of characteristic 2. This is
almost the situation to which Fact 2.27 applies, though as the base fields of the factors may vary
one cannot say that this is literally so. While it would suffice to apply that result to each factor,
we may argue more directly as follows.

Let X* be an elementary extension of X in which each direct summand is uncountable, and
of fixed cardinality. Then the base fields of the factors may be identified and X* becomes an
algebraic group over an algebraically closed field of characteristic 2. Thus after replacing X by
X* we may suppose that X is itself algebraic. Then the condition on Y implies that @) is Zariski
closed and hence by Fact 2.27 Y is contained in a parabolic subgroup P of X whose unipotent
radical U contains @. Then Ny (Q) < O2(Y) = @ so U = @ and Y is a parabolic subgroup of
X. 0O

2.7 C(G,T)

Definition 2.29 Let G be a group of finite Morley rank, T a subgroup (typically a Sylow® 2-
subgroup). Then C(G,T) is the subgroup of G generated by all subgroups of the form Ng°(X)
where X < T is definable, connected, and invariant under the action of Ng°(T).

This is the notion to which we refer in the C(G,T) classification theorem stated in §1. Tt
would be somewhat more natural to replace this by the following.

Definition 2.30 Let G be a group of finite Morley rank and T a definable subgroup of G.

1. A subgroup X of T is said to be continuously characteristic in T, relative to G, if it 1s
mvartant under the action of all connected groups of automorphisms of T' which can be
wnterpreted in G.

2. Cy(G,T) is the subgroup of G generated by Ng°(X) as X wvaries over all definable, con-
nected, continuously characteristic subgroups of T'.

Evidently if X is continuously characteristic in 7" relative to G then it is invariant under
the action of Ng°(7T). In particular Co(G,T) < C(G,T). Thus the version of the C(G,T)-
theorem based on Cy(G,T) is stronger. Furthermore it is true, and can be proved by paying
more attention to issues of definability in the proof of Stellmacher’s theorem. However as the
version given here covers all intended applications, we leave this point aside.

2.8 Abelian Sylow subgroups and standard components

The following two facts were proved in [4] under a restrictive hypothesis (“tameness”) which can
now be eliminated using Jaligot’s classification (Fact 2.11). This is clear from the presentation in
[4], where the theorems were given explicitly in the form of the existence of a weakly embedded
subgroup in a minimal counterexample, in the absence of a tameness hypothesis.



Definition 2.31 Let A < B < G be three groups. Then A is said to be strongly closed in B
(relative to the ambient group G) if for any elements a € A, g € G, if the conjugate a? lies in B
then t lies in A.

Fact 2.32 ([4, 21]) Let G be a simple K*-group of finite Morley rank and of even type. Suppose
that G contains an infinite definable abelian subgroup A which is strongly closed in a Sylow® 2-
subgroup of G. Then G ~ PSLy(K) with K an algebraically closed field of characteristic 2.

Definition 2.33 Let G be a group of finite Morley rank, and L a quasisimple definable subgroup.
Then L is said to be a standard component for G if:

1. C(L) contains at least one involution;

2. For any involution i € C(L), L is a component of C°(i) (i.e., L is normal in C°(i), and
is accordingly a factor of E(C°(i))).

Fact 2.34 ([4, 21]) Let G be a simple K*-group of finite Morley rank and of even type. Suppose
that G has a standard component L of the form SLo(K) for some algebraically closed field of
characteristic 2. Let U be the connected component of a Sylow 2-subgroup of C(L) and let A be
a Sylow 2-subgroup of L. If U 1s nontrivial then AU s a Sylow® 2-subgroup of G.

As far as Fact 2.32 is concerned, we will only make use of the case in which the Sylow®
2-subgroups of G are themselves abelian.

2.9 Properties of SL,

The material of this subsection 1s needed only to carry out the proof of an analog of Stellmacher’s
pushing-up theorem in the finite Morley rank context. We need essentially the same facts that
Stellmacher uses in the finite case, relating to representations of SLy over the prime field. In
our case these will be infinite dimensional representations and some care must be taken on that
account. The following result of Timmesfeld is helpful in this connection.

Definition 2.35 Let G be a group and V an elementary abelian 2-group on which G acts, and
A a subgroup of G. The action of A on V is said to be quadratic if [V, A, A] = 0.

Fact 2.36 ([29], Proposition 2.7) Let V be a ZX-module where X ~ SLo(K) with K a field.
Suppose the following:

(1) Cy(X)=0and [V, X] =V
(2) [V, A, A] = 0, where A is a mazimal unipotent subgroup of X.

Then for some field action on (vX), the vector space (vX) is a natural module for each

v E Cv(A)X

Fact 2.37 ([26]) If K is a field of finite Morley rank, every definable subgroup of GLo(K) is
either solvable-by-finite or contains SLo(K).

Corollary 2.38 Let G be group of finite Morley rank which is isomorphic to SLa(K) as an
abstract group with K an algebraically closed field. Suppose A is an infinite definable unipotent
subgroup of G. Then for some conjugate B of A, (A, B) = G.

Proof. Let A be as in the statement and B be a conjugate of A which does not normalize A.
Then H = (A, B) is a definable connected subgroup of G by Fact 2.1. If H is solvable then I is
contained in a Borel subgroup of (¢, contradicting the choice of B. Thus Fact 2.37 applies and
H=¢. 0O
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Lemma 2.39 Let G be a group of finite Morley rank which is isomorphic to SLy(K) as an
abstract group with K an algebraically closed field of characteristic 2. Let S x R be a Borel
subgroup with S a Sylow 2-subgroup of G and R a mazimal torus. Then the following hold:

(1) G is generated by S together with any involution i not in S.

(2) Let V be an elementary abelian 2-group on which G acts faithfully so that (G, V) has finite
Morley rank, and set f =tk K. Then tkV > 2f.

Proof.

Ad (1). This follows from Corollary 2.38 applied to (S, S%).

Ad (2) Let V be as stated. We may assume that V is irreducible. If some nontrivial element
v € V satisfies 1k (C(v)) < f then tk V > 1k (v¥) > 2f and we are done. So we assume toward
a contradiction that rk (Ce(v)) > f for all nontrivial v € V.

Fix v € Cy(S)*. As rk (Cg(v)) > f, we have Cg®(v) > S and thus Cg°(v) has the form
S x Ry with Ry a nontrivial torus, which is not necessarily algebraic. Let w be an involution
that inverts Ry and set v; = v + v*. Note that vy # 0; in fact, if w € Cg(v) then by Corollary
2.38, we have Cg(v) = G. But by assumption, the action of G on V is irreducible.

Now, (w, Ry) < Cg(v1). As tk(Cg(v1)) > f, Cg°(v1) has a nontrivial Sylow® 2-subgroup
@), which is normal in C°(v1) and in particular is normalized by Ry and by w. But there is no
such 2-group @ in G since the only Sylow 2-subgroups normalized by Ry are S and S*. O

Proposition 2.40 Let G be a group of finite Morley rank which, as an abstract group, is iso-
morphic to SLa(K) with K an algebraically closed field of characteristic 2. Let A be an infinite
definable 2-subgroup of G, V a connected elementary abelian 2-group which s a G-module such
that (G, V) has finite Morley rank. Suppose Cy (G) = 0. Then:

1.tk (A) <k (V/Cv (A));
2. Equality holds only if A 1s a Sylow 2-subgroup of G, and V s a natural G-module.

Proof. Let f = rk K. By Corollary 2.38, ¢ = (A, B) with B some conjugate of A. As Cyv (G) =
0, the natural map V — [V/Cv(A)] x [V/Cyv(B)] is injective and thus rk V < 2rk (V/Cv (A)).
By Lemma 2.39 (2), tk (V/Cv (A)) > f > rk A. This proves the first point.

Now suppose tk A = rk (V/Cv(A)). Then rkA = f and A is a Sylow 2-subgroup of G.
Furthermore rk (V/Cyv(A)) = fsorkV < 2f and by Lemma 2.39 rk V' = 2f.

It remains to be seen that in this case V is a natural module. For this we use Timmesfeld’s
result, Fact 2.36. AsrkV = 2f, V is irreducible and thus [V, G] = V. The only point that needs
to be checked is the quadratic action: [V, A, A] = 0 where A is a Sylow 2-subgroup of G.

Let X = |J{Cv(A9)* : g € G}. Then X is the union of pairwise disjoint sets of rank f
and hence tk X = 2f, and X is generic in V. Thus a generic element of V is fixed by a Sylow
2-subgroup of G.

We claim that every element v € Cy(A)* has Cg®(v) = A. Supposing the contrary, we
proceed as in the proof of the previous lemma. We suppose v € Cy (A)* is centralized by a
nontrivial torus R and we take w inverting R. Consider v1 = v + v*. Then as in the proof of
the previous lemma Cg(v;) must be a torus. In particular tk Cg(vy) = f and thus v¢ is also
generic in V. But this contradicts the result of the previous paragraph.

Let T be a maximal torus in Ng(A). For v € C%(A)X as C%(v) = A, the orbit vT is
generic in CF (A) and as C(A) is connected, C}, (A)* is a single orbit under 7. But if 4; # A
is a conjugate of A normalized by T then V = Cy(A4) & Cyv (A1) as a T-module and thus
VX = (V/Cy(A))* is also a single orbit under 7T'. Since Cy (A) # 1, it follows that Cy(4) =V,
or in other words [V, A] < Cy (A), and [V, A, A]=0. O

The following corollary is an analog of a result given in [27] and [28].
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Corollary 2.41 ([28], (2.1) of [27]) Let G be a group of finite Morley rank which is isomor-
phic to SLa(K) with K an algebraically closed field of characteristic 2. Let V be a faithful
FoG-module. Let S be a Sylow 2-subgroup of G. Assume that T < S s definable and nontrivial,
and:

(1) V.1, 1] =1,
(ii) xk (V/Cv(T)) < xk (T).
Then the following hold:
(a) 1k (T) =1k (V/Cv (T)),
(b) T =35,
(c) V/Cv°(G) is a natural Fy-module for G,
(d) Cy(S) = [V, S]Cv (G).

Proof. Point (d) is a special case of (¢). We have proved (a — ¢) under the assumption that
Cy(G) = 0. All that we need to prove now is that CV/CVO(G)(G) =0.

Let V5/Cv°(G) = CV/CVO(G)(G)' Then [Vy, G,G] = 1 so by the Three Subgroups Lemma
[Vo,G] = 1, as claimed. O

2.10 Balance and components

We remind the reader that for a group of finite Morley rank G, F'(G) stands for the Fitting
subgroup, the subgroup of GG generated by all its normal nilpotent subgroups. It is definable
and nilpotent (Theorem 7.3 of [11]).

Fact 2.42 Let H be a K-group of finite Morley rank. Then Cg®(F°(H)) = Z°(F°(H))*E°(H).
In particular, if H is solvable then Cy®(F°(H)) = Z°(F°(H)).

Proof. Let K = Cy®(F°(H)). Then Z°(F°(H)) < Z°(K). If o(K)/Z°(F°(H)) is infinite,
then as the quotient has a definable characteristic abelian subgroup, K contains a characteristic
connected nilpotent group N properly containing Z°(F°(H)). Then N < (F°(H) N K)° =
Z°(F°(H)), a contradiction. So o(K)/Z°(F°(H)) is finite.

In particular, as K is connected, [K,o(K)] < Z(K). Thus [K,[K,s(K)]] = (1) and by a
standard application of the three subgroups lemma, [K(®) ¢(K)] = (1). By Fact 2.20 K =
K(=®)g(K), and as K is connected this yields K = K(®)g°(K) = K(=)7°(F°(H)). Let E =
K= As [E,¢(K)] = (1), we have o(E) = Z(E) and by Fact 2.20, E/Z(E) is semisimple.
Hence £ < E(K) < E°(H). Thus K < Z°(F°(H)) % E°(H) and the reverse inclusion is
immediate. O

Fact 2.43 ([3]) Let H be a connected solvable group of finite Morley rank and S a Sylow 2-
subgroup of H. Assume S is unipotent. Then S < F(H), and therefore S is a characteristic
subgroup of H.

The following result is known as the Thompson A x B-Lemma.

Fact 2.44 ([3], 10.4 (1)) Let G be a group of finite Morley rank whose definable p-subgroups
are nilpotent-by-finite, and let A and P be definable p-subgroups of G with A normalizing P.

If B 1s a definable subgroup of G containing no element of order p, which normalizes P and
centralizes both A and Cp(A), then B centralizes P.

The next result is referred to as the L-balance property:
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Fact 2.45 Let H be a K-group of finite Morley rank of even type, and U a 2-subgroup of H.
Then E°(C(U)) < E°(H).

Proof. Let T be a torus contained in a component of E°(C(U)). Let P be O2(H). Now
Cp(U) < 0(C(U)), so T commutes with Cp(U). By the Thompson A x B-lemma, with B = T,
T commutes with Os(H). As such tori generate E°(C(U)), E°(C(U)) centralizes O2(H). On
the other hand E°(C(U)) also centralizes O(H) since E°(C(U)) is generated by unipotent 2-
subgroups (Corollary to Fact 2.43). Thus E°(C(U)) centralizes F°(H) = Ox°(H) * O(F(H)).
But the connected component of the centralizer of F°(H) in H is Z°(F°(H)) « E°(H) (Fact
9.42), so E°(C(U)) < E°(H). O

Fact 2.46 Let H be a connected K-group of finite Morley rank, of even type, and let U be a
2-subgroup of H. Then E°(C(U)) < E(H).

Proof. By Fact 2.22 Z(E(H)) is finite, and F(H) is a central product of quasisimple algebraic
groups. As H is connected, it acts by inner automorphisms on E(H). Hence so does U.

By Fact 2.45, E°(C(U)) < E(H), so E°(C(U)) = E(Cpm)°(U)). As U acts by inner
automorphisms, Cg(g)(U) is the central product of Cr,(U) as L varies over the factors of F/(H),
and E°(C(U)) is correspondingly the central product of the groups E°(Cr(U)).

For any factor L of E(H), U acts on L as a 2-subgroup U of L. If this group is trivial then
E(CL(U)) = L, and otherwise E(CL(U)) = E(CL(U)) = 1; this last result is a consequence of
the result of Borel and Tits on the relation between unipotent subgroups and parabolic subgroups
given above as Fact 2.27, as explained for example in [17, 13-4] or [18, §3] . O
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3 Baumann’s Theorem, Pushing up, and C(G,T)

The following analog of a theorem of Stellmacher in the finite case will be assumed in the present
section. A proof will be given in the appendix, following closely on the proof as given in [27]
and using the information about SLa(K) collected in the previous section.

Theorem 3.1 ([27]) Let G be a group of finite Morley rank of even type. Let M be a definable
connected subgroup of G such that M = M/O2(M) ~ SLa(K) for some algebraically closed field
K of characteristic 2, and F*(M) = O2(M). Assume that for S a Sylow 2-subgroup of M :

(P)  no nontrivial definable connected subgroup of S is normalized by both M and Ng(S)

Set Q = OQ(M), Lo = Oz(M), V= [Q,Lo], and D = CQO(L()).
Then the following hold:

1. V 1s an elementary abelian 2-group central in Q.
V/V N Z(M) is a natural Fo(M)-module.
@ = DV, a central product.

S/°(Z(S)) is an elementary abelian 2-group.

AN NI

7Z°(Q) is an elementary abelian 2-subgroup.

Here O?(M) is the smallest definable normal subgroup H of M such that M/H is a 2-group;
since M = M/O2(M) is simple, this is the smallest definable normal subgroup of M covering
M, and coincides with M (). As in finite group theory F*((G) denotes the “generalized Fitting
subgroup” of a group G and for (G of finite Morley rank the definition follows that in finite group
theory: F*(G) = F(G)E(G).

3.1 The Baumann pushing up Theorem

In this subsection we obtain analogues in our context of results from [8].

Theorem 3.2 Let G be a group of finite Morley rank of even type. Let M be a definable
connected subgroup of G such that M = M/Os(M) = SLy(K) with K an algebraically closed
field of characteristic 2. Assume that F*(M) = Oo(M). If S is a Sylow 2-subgroup of M then
the following hold:

1. S contains a nontrivial definable connected subgroup which is normalized by both M and

Ng°(5).
2. If in addition
(P")  no nontrivial definable subgroup of S is normalized by both M and Ng(S)
then there erxists an automorphism a definable in G such that S = Z(O2(M))*O2(M).

Proof. 1. We use the notation of Theorem 3.1 as well as the structural information provided
there concerning the groups @, V, and D. Note that when one assumes that S contains no
nontrivial definable connected subgroup which is normalized by both M and Ng°(S), all the
assumptions of Theorem 3.1 including (P) are fulfilled (G replaces G). We will show eventually
that V = <VNGO(S)> is normal in M. This will suffice to prove 1 since it is obvious that N&(S5)
normalizes V.

Note that @ is connected by Fact 2.26, thus S is connected. As Ly covers M and V < Ly we
have S = Q(SN Lo) = D(SN Ly). As F*(M) = @ and M is simple, Z(S) < Q. We note further
that @ N (Lo Z(S)) = (@ N Lo)Z(S) = (DN Ly)VZ(S) =V Z(S)
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We set W = VZ°(S). As F*(M) = @, we have W < @, and by Theorem 3.1 (1) and (5),
W is an elementary abelian subgroup central in ). Let f denote the rank of the field K over
which M/O2(M) is defined. Note that rk (S/Q) = f.

A few remarks on the structure of W are in order. We have W/Z°(S) ~ V/V n Z°(S).
By Theorem 3.1 (4) we have [S,V] < Z(S) and then by Theorem 3.1 (2) we find VN Z(S) =
[S,VI(VNZ(M)), and tk (W/W N Z(S)) = f. Ifi € W\ Z(S) then as @ < Cs(i) < S, we
have C'¢(#) = @ by Theorem 3.1 (2). Expressed in terms of the co-rank, namely co-rk ¢ Cs(¢) =
rk S — 1k Cs(¢), this becomes co-rk ¢ Cs(7) = f.

On the other hand, suppose ¢ € S\ @ is any involution with co-rk s Cs(i) = f. We will
show that ¢ € (SN Lg)Z(S). As S = D(SN Lg) we may write ¢ = 4145 for elements ¢; € D,
is € (SN Lg). Now iy € (SN Ly) \ @, so co-rky Cy(iz) > f because i2 acts nontrivially on the
natural module V/VNZ(M). On the other hand ¢; commutes with ¥V and hence Cy (i) = Cy (42).
Thus co-rky Cy (i) = f.

We claim that Cg(i) = Cp(i)Cyv(i). Suppose d € D, v € V, and [dv,i] = 1. Then
[v,i] = [d,i] € DNV < C(Lg). Thus in view of the action of S on V, v € Z(S). Thus v,d € C(i)
and our claim is proved. As DNV < C(i) we may work in Q = Q/D N V. Then Q/C(i) =
D/C’D(i) X V/C’V(z) As f > co-tk gCq (i) = co-tk 5 Cp (i) + co-tk v Cv (i) = co-tk pCp (i) + f,
we find D < C'(7). On the other hand i3 commutes with D, so D < C'(é1). Thus ¢; commutes
with DV Ly and hence i1 € Z(S). Thus ¢ € (SN Ly)Z(S) as claimed.

Now suppose that « is any definable automorphism of S for which W< £ @. Then W*\ @ C
(SN Ly)Z°(S), and since W* \ @ generates W%, also W% < (SN Lg)Z°(S). Furthermore we
claim that W* N Q < Z(S) in this case. Let j € (IW*N Q). Then j € QN (Lo Z(S)) = VZ(S).
However looking again at the natural module, as j commutes with an involution in W N (S\ @),
this forces j € Z(S) as claimed.

Thus if We £ Q then W*Q/Q ~ W*/W*NQ has rank f since Z°(S) < W*nNQ < Z(9),
and hence S = W*Q.

Suppose now (3 is another automorphism of S for which W# £ @. Then S = W*Q = W”Q.
Take i € W<\ @, and choose j € W# representing the same nontrivial element of S/@. Then
ij € Q = VD. Let ij = vd with v € V, d € D. Then (vd)’ = (vd)™! = vd™! so v'v €
VN D < Z(M) and i acts trivially on v in V/(V N Z(M)). As V = V/V N Z(M) is a natural
module, i € S\ @, and Z(S) covers [i, V], we find v € Z(S) and hence ij = vd € C(i). However
ij € QN (LoZ(S)) = VZ(S) and Cyz(s)(i) = Z(5), so ij € Z(S5), and i € WFZ(S). Thus
We < (WPZ(S))° = WP,

We claim now that for X any connected group of automorphisms of .S which is interpretable
in G, we have W% < @ for « € X. Suppose this fails. Then there is a unique element W*
(ae € X)) in the orbit of W under X such that [IW, W®] # 1, namely the one for which W& £ Q.
Evidently the same condition applies to W7 for any § € X:

If 3 € X then there is a unique o € X such that [IW* W#] # 1.

Let W = (WX). Then C(W) = C((WX°)) for some finite Xo C X. Then X/N(W) =
Xo/N(W): if B € X, and « is chosen so that [W® WF] # 1, then there is some By € Xp
so that [IW* W#e] # 1 and as we have seen this forces W# = WF°. Accordingly X/Nx (W) is
finite and as X 1s connected, X normalizes W, a contradiction.

In particular W N () < Q and thus V = <VNGO(S)> < Q. Thus [V, Ly] < [@,Lo] = V and
Lo normalizes V. Furthermore S normalizes V and as M = LyS, M normalizes V. This proves
1.

2. This is mostly a variation over the final argument of part 1. The proof of 1 shows that
if « is an automorphism of S definable in G such that W< £ @Q, then S = W*Q. Therefore
it suffices to argue that such a definable automorphism exists. If not then WNe(5) < @ and
thus V = (VNe(5)y < Q. Thus [V,Lo] < (@, Lg] = V and Ly normalizes V. Furthermore S
normalizes V and as M = LyS, M normalizes V. But V is definable by Fact 2.1 (ii), and as a
result the assumption (P’) is violated. O
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Remark 3.3 The proof of the first part of the foregoing theorem also shows that starting with
the configuration delivered by the Stellmacher theorem, we can find a normal subgroup of M
which is continuously characteristic in S relative to G, namely the group generated by all V¥,
where a varies over all automorphisms of S belonging to any connected group of automorphisms
of S interpretable in (G. However for this to be of any potential use one would also need to
strengthen the Stellmacher theorem correspondingly.

3.2 Pushing up to a parabolic subgroup

Theorem 3.4 (Pushing Up) Let G be a simple K*-group of finite Morley rank and of even
type, @ a unipotent 2-subgroup of G such that Q@ = O3(N°(Q)), with B(N°(Q)/Q) ~ SL2(K)
for some algebraically closed field of characteristic 2. Then N°(Q) contains a Sylow® 2-subgroup
of G.

Proof. By Fact 2.26, @) is connected. We may suppose that ¢ is nontrivial.

Let M = B(N°(Q)). Let S be a Sylow® 2-subgroup of M, and extend S to T a Sylow®
2-subgroup of GG. Tt suffices to show that N°7(S) = S.

We make a case division according as the conclusion of Theorem 3.2 1 does or does not hold
for M, namely:

(BT) There is a nontrivial connected definable subgroup
X of S which is normalized by M and by N°(S).

Suppose first the condition (BT) holds, and fix X < S accordingly. As M < N°(X), by
Lemma 2.28 S is a Sylow® 2-subgroup of N°(X). As Np°(S) < N°(X), we have Np°(S) = 5,
as required.

Now we deal with the case in which condition (BT fails. We first consider the structure of
M. Then by Theorem 3.2 1 M = F*(M) = L x ). Furthermore @ is elementary abelian, as
otherwise we set X = ®(5) = ®(Q), and X is connected (Fact 2.19) and normalized by both M
and N(S), and is nontrivial.

In this situation, we claim that @ is a Sylow® 2-subgroup of C'(L). Let U be a Sylow® 2-
subgroup of C'(L) containing ). Then Ny®(Q) < M = LQ and Ny°(Q)NL =150 Np°(Q) = Q
and by the normalizer condition @ = U.

Our final goal 1s to show that L is a standard component in (; then Fact 2.34 shows that .S
is a Sylow® 2-subgroup of G. As U < C(L), C'(L) certainly contains involutions.

Let ¢ be an involution in C'(L). We must show that L is a component of C° (). Suppose first
that i € Q. Then S < C°(4) and S is a Sylow® 2-subgroup of C°(i) by Fact 2.28. Thus by Fact
2.25 L is a component of C° (7).

Now let ¢ be any involution in C(L). As @ is a Sylow® 2-subgroup of C'(L), we may assume
that ¢ normalizes @. In particular, Cg°(i) # 1. Let j be an involution in Cg°(¢). Then L is a
component of C°(j) and hence of CCO( )°(j). By Fact 2.46, L is a component of C° (7). O

7

3.3 The C(G,T) Theorem

In this subsection we prove a “global” C'(G,T) theorem in the context of simple K*-groups of
even type. In finite group theory the “local” C'(G,T) theorem was proven by Aschbacher in
[6, 7]. Later Gorenstein and Lyons gave a proof for K-groups in [16]. [18] (pages 96-98) contains
an outline of “Theorem M (S)” which is a “variation of the global C'(G, T') theorem” whose proof
will be given in later volumes of the same series on the revision of the classification of the finite
simple groups.

We refer to Subsection 2.5 for the precise definition of C(G, T) as used here, and a comparison
with related notions.

Theorem 3.5 (C(G,T)) Let G be a simple K*-group of finite Morley rank of even type with
T a Sylow® 2-subgroup. If C(G,T) < G then G ~ SLy(K) for some algebraically closed field K
of characteristic 2.

16



Proof. With G fixed, we define M(T) = C(G,T). With I'"(()) as in the statement of Corollary

2.13, we will prove:
(%) M(S) = M(T) when (S,T) is an edge in T*(G).

From this it follows that the graph T'*((G) is disconnected, as otherwise C(G,T) would be
independent of the choice of T" and hence normal in G. Then Corollary 2.13 applies and the
theorem follows. Thus it suffices to verify (x).

Suppose toward a contradiction that () fails, and take a counterexample (S, T') with rk (SNT)
maximal. Let Q@ = (SNT)® and H = N°(Q). Certainly @ is a proper subgroup of S and 7. We
will show in due course that Theorem 3.4 applies to H.

We claim that there is a Sylow® 2-subgroup S; of G such that M(S) = M(Sy), S1 N H >
(SN H)°, and S; N H contains a Sylow® 2-subgroup of H. Indeed, let S; be any Sylow® 2-
subgroup of G which contains a Sylow® 2-subgroup of I containing (SNH)°. Then rk (SN Sy) >
rk (SN H) > rk@ since Ng°(Q) > Q. Hence M(S) = M(S;), as claimed, since otherwise the
choice of the pair (5, T) is contradicted.

Similarly we may take 77 a Sylow® 2-subgroup of ¢ such that M (71) = M (T) and (TY1 N H)°
is a Sylow® 2-subgroup of H containing (TN H)°. As (SNT)° < (SNH)N(TnNH),
(SNTY) < S NTy. Thus M(S1) # M(T1) and tk (S; NTy) > rk (SN T); so S and T may be
replaced by 57 and 77, which means that we may now suppose that SN H and T'N H contain
Sylow® 2-subgroups of H.

With this choice of S and T', we have O2°(H) < (SNT)° = @, so O2°(H) = @, and by Fact
2.26:

O2(H) =Q

Let H = H/Q. It is easy to see that ['*(H) is disconnected, and specifically that w = (SN H)°
and v = (T'N H)° lie in different components. Indeed if (Q;) is a sequence of Sylow® 2-subgroups
of H such that Q; links u to v in F*(P]), then the meaning of this in H is that the ); are Sylow®
2-subgroups of H such that the rank of any consecutive intersection ¢; N Q;41 1s greater than
rk (SN T). If therefore Q; is extended to a Sylow® 2-subgroup R; of H, then by the choice of
the counterexample (S,7T) we find M(R;) = M(R;4+1) along the path. Thus M(S) = M(T), a
contradiction.

Since H is a K-group and I'*(H) is disconnected, by Corollary 2.13 we have:

B(H) ~ SLy(K) with K algebraically closed of characteristic 2.

Thus Theorem 3.4 applies to H, and H contains a Sylow® 2-subgroup of (G. But we also
arranged to have ST meet H in Sylow® 2-subgroups of H, so now we have S,T < H.

As in the proof of Theorem 3.4, we must again consider whether the conclusion of Theorem
3.2 1 applies to B(H), or not. If it does, then S has a nontrivial definable connected subgroup
X which is normalized by N°(S) and by B(H), so in particular by 7. Hence T' < M(S). But
then S and T are conjugate in M (S), say by g. This gives M (T) = M(S9) = M(S)? = M(S),
a contradiction to the choice of S and T'.

If on the other hand the conclusion of Theorem 3.2 1 does not apply to H, then as before
we find that B(H) = Q x L with L ~ SLa(K), K algebraically closed of characteristic 2, and
@ elementary abelian. In particular the Sylow® 2-subgroups of H are elementary abelian. As
H contains a Sylow® 2-subgroup of G, the same applies to G, so Fact 2.32 applies to G and
G ~ SLy(K) with K algebraically closed of characteristic 2, as required. O
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Appendix: Stellmacher’s Theorem

In this section we carry over the results in [27] to the context of groups of finite Morley rank
of even type, following closely the notation and the arguments of [27]. There are some deviations
from the arguments as given there: on the one hand the representation theory of SLy(K) over
the field of 2 elements now involves infinite dimensional representations, and in particular ranks
are used rather than dimensions to compare sizes; in addition rather than passing to a free
product with amalgamation (or in graph theoretical terms, a tree) we remain in the context of
an ambient group of finite Morley rank. The latter point avoids issues of definability.

An important deviation is in the statement of the theorem itself. Our condition (P) is weaker
than the most natural analog of Stellmacher’s condition, and it is essential for applications that
the proof goes through with this assumption.

The entire section will be devoted to the proof of the following theorem, parallel to the main
result of [27] in the finite case:

Theorem 3.1

Let G be a group of finite Morley rank of even type. Let M be a definable connected subgroup
of G such that M = M/Os(M) ~ SLs(K) for some algebraically closed field K of characteristic
2, and F*(M) = O2(M). Assume that for S a Sylow 2-subgroup of M :

(P)  no nontrivial definable connected subgroup of S is normalized by both M and Ng(S)

Set Q = OQ(M), Lo = Oz(M), V= [Q,Lo], and D = CQO(L()).
Then the following hold:

1. V 1s an elementary abelian 2-group central in Q.
V/V 0 Z(M) is a natural Fo(M)-module.
Q=DV.

S/°(Z(S)) is an elementary abelian 2-group.

A N

7Z°(Q) is an elementary abelian 2-subgroup.

The finite version of this theorem is proven in [27] using the amalgam method. We adapt
this to our present context. Fix M, S, G as in the statement of the theorem. By Fact 2.26 S is
a connected group. We let H = Ng(S) and G = (M, H). By Corollary 2.2 G is definable in G,
and we may replace G by GG. Set B = M N H. Note that B is a Borel subgroup of M.

A The associated graph

We will consider the bipartite coset graph I' of G corresponding to the pair of subgroups M and
H. The two types of vertices will be the cosets of M and H in (. In particular we will refer
to a coset of M as a vertex of type M. The edges are the cosets of B in G. An edge Bz has
as its vertices the cosets Mz and Hx. The natural action of G on I' is definable. The following
properties given in [14] apply here.

Lemma A.1 (1.1, [27]) (a) T is connected and bipartite.
(b) G is edge but not vertex transitive on T.
(¢) The vertex stabilizers in G are conjugate to M or H.
(d) The edge stabilizers in G are conjugate to M N H = B.

(e) For A € T, the vertex-stabilizer G is transitive on the set of vertices adjacent to A.
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Lemma A.2 (1.2, [27]) No nontrivial definable connected subgroup of G is normal in the sta-
bilizer of two adjacent vertices. The kernel of the action of G on ' s a finite subgroup of

0s(2(G)).-

Proof. If K is a definable subgroup of G which is normal in the stabilizers of two adjacent
vertices, then by edge transitivity we may suppose that these vertices are M and H. Then
K <M and K < B, so K < O3(M) and condition (P) applies. Hence K cannot be nontrivial
and connected.

In particular if K is the kernel of the action of G on T' then K < Oo(M) and K® =1. As G
is connected, K < Z(G) as well. O

Since we prefer to work with a faithful action, we will factor out the kernel of the action of
G on T, which will not affect our hypotheses. (We will also have to check the validity of our
conclusions in the original context, at some point.) Thus we will generally suppose:

(*) G acts faithfully on T

B The module 7,
Notation B.1 Let a, o’ be vertices of I
1. d(a, ') will denote their distance in T'.
GV is the intersection of the groups Gg for which d(a, 3) < 1.
Qo = 02(Ga)
Zo = (1°(2(1) : T € Syly(Ga))-

Sros e e

bo = min{d(e,8): €T, 7, £ Gg)}. Let b = bs with § of type M.
6. (a,a’) is a critical pair for T' if o is of type M, d(a,¢’) = b and Z, £ Gfxl,).

Remark B.2 1. Qo and Z, are of interest only when o s of type M ; otherwise, (), 1s the
unique Sylow 2-subgroup of Gy, and Zy is 01°(Z(Qq)).

2. For « of type M, Z, 1is the critical object of study. We will see momentarily that this is an
elementary abelian 2-group which affords a nontrivial representation of Go/Qq ~ SLa2(K),
which will essentially be the natural representation.

3. The parameter b, is well-defined (finite) since Z, is nontrivial, T is connected, and the
action of G on I 1s faithful. Furthermore b, evidently depends only on the type of o, so
b is also well-defined. Large values of b lead quickly to implausible (and contradictory)
configurations; our main concern will be with the possibilities b = 2 and b = 4.

4. The definition of a critical pair implies that Z, < Gy .
Lemma B.3 (1.3, 3.1, [27]) Let a € T be of type M. Then:

1. Qo= OQ(G(O})) is a Sylow 2-subgroup of G&l).

2. For T a Sylow 2-subgroup of Gy, Zo > 01°(Z(T)).

5. 7 < 0°(2(@u)) and Ca (Z2) = Qu.

4. b> 2 s even.

In particular, Go/Q« acls on Z,, and the action is nontrivial.
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Proof. Ad 1. We may suppose that « = M. For S a Sylow 2-subgroup of M, the vertex
B = N°(S) is a neighbor of « and hence G < N°(S). Hence a Sylow 2-subgroup of G is
contained in O2(M) = Q4. On the other hand M acts transitively on its neighbors, by edge
transitivity, so they are of the form N°(S) with S a Sylow 2-subgroup of M. Thus Q, < G(O})
is a Sylow 2-subgroup of G&l).

Ad 2. Tt Zo = 0% (Z(T)) we contradict Lemma A.2.

Ad 3. Again we suppose &« = M. Let S be a Sylow 2-subgroup of M. Then Z°(S) <

CMO(ro) S ro as F*(M) = OZ(M)a S0 ZO(S) S Z(ro)' Hence Zoc S Qlo(Z(ro)) and
Ca. (Z4) > Q. But Go/Qy is simple so by point (2), Ca, (Za) = Qa.

Ad4. As 7, < @, < G(O}) we have b > 1. It suffices now to check that b is even, or in other
words, taking (o, a’) to be a critical pair, we claim that o' is of type M. If this is not the case

then O2(G,r), which is the Sylow 2-subgroup of G, is contained in GE)},). Since Z, < Gy by
the definition of a critical pair (Remark B.2 4), we have 7, < O3(Go < GE)},), a contradiction.
(I
Lemma B.4 (1.4, [27]) Let («,a') be a critical pair. Then:

1 1# [Zay 2] < Za O L.

2. [Zay Zar, Zot) =1 = [Zop, Zyy Za)).-

3. (o, ) is a eritical pair.
Proof. By the minimality of & we have 7, < G, and thus Z, normalizes Z,/. As thisis a
critical pair however, 7, € Qo and thus [Z, Z.] # 1 (Lemma B.3 Ad. 3, Ad. 4). In particular
Zor £ Qo and thus the pair (o, «) is also critical. So (1,3) both follow. Lemma B.3 and (1)
imply (2). O
Lemma B.5 (2.2, [27]) Let (o, ') be a critical pair for T and set Go = Go/Qo. Then:

1. Z4]70 N Z(Gy) is a natural SLy-module for G ..

2. ZoQy 15 a Sylow 2-subgroup of G,

3. Setting S = ZoQq, 1°(Z2(9)) = [Za, Za](Za N Z(Gy))°

Proof. As both («,a’), and (o, «) are critical pairs, we will first suppose that for the pair
under consideration we have:

rk (ZQI/ZQI N QQ) >rk (ZQ/ZQ N ro’)

We may also assume G, = M.

We apply Corollary 2.41 to G, and its subgroup 7' = Z,, acting on the module V = Z,.
With this notation, the hypotheses of the corollary are that 7, is a faithful module (Lemma
B.3), that [Z4, Zo/, Zor] = 1 (Lemma B.4), and that:

tk (Za/Cz.(Zat)) < 1 (Za)

which decodes to the condition assumed at the outset.
Corollary 2.41 then yields the following four conditions:

1. tk (Zo) =1k (Z4/Cz,,(Z41)), and thus our results apply equally to (a,a’) or (o, a);
2. Zgi is a Sylow 2-subgroup of G, which was our second point;
3. ZQ/CZQ(GQ) is indeed a natural module;
4. Cz (Zo) = [Za, Zar]Cz_ (Gy); this is our final claim, taking into account: C%Q(Za/) =
0 °(Z(Z0 Qo))
(I
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C The case b =2

We know that b > 2 is even. In this section we show that the case b = 2 leads to the configuration
described in the theorem. Subsequently we will show that the case b > 2 leads to a contradiction.
Recall that at an early stage we modified (G to ensure that the action on T is faithful, and
that we are presently engaged in verifying the theorem in that case. Since the present case does
not lead to a contradiction, but rather to conclusions about the structure of ¢, it will also be
necessary to argue that these conclusions pass over to the general case.
We recall the notation involved in analyzing the structure of M:
Q = 0:(M) Lo = O*(M)
V= [QaLO] D:CQO(LO)

The following lemma will be useful in this subsection as well as in the following.

Lemma C.1 If o, § are vertices of type M in T with d(a, 8) = 2, then G, N G contains a
unique Sylow 2-subgroup of G, and Gpg.

Proof. There is a vertex v of the form N°(T) adjacent to both & and 4, with T" a Sylow 2-
subgroup of GG, and Gg. If the intersection contained another Sylow 2-subgroup of GG, then by
Lemma 2.39 the two together would generate G,. O

Proposition C.2 (3.2, [27]) Assume that b = 2 and that the action of G on T is faithful.
Then the following hold:

1. @ =DV, and V s an elementary abelian 2-group central in Q).
2. For S a Sylow 2-subgroup of M, S/1°(Z(S)) is an elementary abelian group.
3. Zo = Z°(Qq). In particular, 7°(Q) is an elementary abelian group.

Proof. Let (o, ') be a critical pair for I' with & = M. Then the subgroups @, Ly, D,V lie in
G, and in particular Q@ = @,,.
As b =2, Lemma C.1 implies that G, N G/ contains a unique Sylow 2-subgroup S of G,,.

(1) S=Z.Qu

By Lemma B.5 Z,Q. is a Sylow 2-subgroup of (G,/. Since it is contained in G, as well, it
coincides with .S. The same applies to 7,/ Q.

(2) Qo = Za(Qa N Qur)
o Qo <8 =74Qq . Thus (2) holds.
Now we introduce some additional notation. We fix ¢ € G, so that G, = (Zor, Z9,)Qa,
which is possible since Z,: covers a Sylow 2-subgroup of Go/Q« =~ SLo(K). Set F = (Zo, Z9,).
(3) Za <[5, Za][59, Za]Z(Ga)

We work in the natural module Z, = Z,/Cz_(G4). Then [S, Z,] is a 1-dimensional subspace
of Z,, as is [S9,Z,]. On the other hand [S,Z,] = [Za, Za] < Zor N Zo < Cz (Zo1), s0
[, ZO&] < CZQ(ZOC’) and [S, ZO&] n[s, Za’] < CZQ( ) = CZQ(GOC) =1

Thus Z, =[S, Za] @[S9, Z4) and (3) follows.

(4) Qo = Za(Qa NQuw NQY)

By (1) [S, Zoc] S ro’ and [SgaZOc] S Qg/, 50 by (3) Zoc S (Zoc N ro N ro’)QgCP Now

roonc’ S S9 = ZocQg/ S (Zoc onchoc’)Qg/ 50 roonc’ S (Zochochoc’)(romQﬁmegﬂ) S
Zo(QaNQL NQY,), and this combines with (2) to give (4).
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(5) Qo =Cq.°(F)Za
Evidently Qo N Qo N QY < Cq, (F) and thus (5) follows from (4).
(6) F'Zqy <Gy

We have Go = FQo. Now [Qo, FZ,] = [Co (F)Za,FZ,) < Zy, and [F,FZ,) < FZ,, so
(Ga, FZa) < FZ,.

(7) Zo < F;in particular ' <1 Gy and Ly < F.

By 3) Zo = [Zo, 222, 24)C7,(Go) = [F, Za)01°(Z(Gy)). Consider the factors. We
have ©,°(Z(Ga)) < Zow < F. Also [Zo, 2] < Zo < F and [29,,7,] < Z9, < F. Thus
[Fa Zoc] S F.

Thus Z, < F and F = FZ, < G,. As G, = FQ,, the quotient G,/F is a 2-group and
Lo < F.

(8) Qo =DV

We apply (5). € (F) < D by (7). As Z,/Cz,(Ga) = [Ga/Qa, Za/Cz,(Ga)], we have
7o < Loy Za]Cz,,(Go) < VD. Thus (8) follows.

(9) ®(S) < DU (Z(S)).

As [Zq, Zor] centralizes Qn and Z,r, and S = Z,Q,, we find [Z4, Zo] < Q1(Z(S)). Now
S = Z01Qu=ZasDV. As V = [Qu, Lo] < [Qo, Fl = [Za, F] < Za, we find S = DZu Zer.

Let S = S/DQ(Z(S)). Then S = <ZQ,ZQI>. Furthermore [Z4, Zo] < Q1(Z(S)) and thus
[Za, Zor] = 1. Hence S is elementary abelian and (9) follows.

(10) S/Q1°(Z(S)) is elementary abelian.

The groups [®(5), 5] and B (®(S)) are contained in D by (9), and are normal in .S Hence
they are normalized by LS = (. But as they are characteristic in S, they are normal in N°(S)
as well. As these groups are also connected, by our basic assumption (P), this forces them to

be trivial. Thus ®(S5) < 21(Z(S5)), and as ®(S) is connected, (10) follows.
(11) Z°(S) is elementary abelian.

UY(Z°(9)) is connected, definable, and characteristic in S, and is contained in Cziu(F)
which is contained in D. Thus U'(Z°(S)) is normalized by LoS = (G, and by N°(S), which by

our main assumption (P) implies (13).
(12) Zo = Z°(Qu)-

By Lemma B.3(2), Zo < Z(Qa). As Qo = Cq,(F)Za, we have Z(Qo) = Cz(g.)(F)Za. We
have Cz(qg.)(F) < Z(S) so Z°(Qa) < Z°(S)Za = Za by (13).

This proves all parts of the theorem. O
Corollary C.3 Assume that b = 2. Then the following hold:

1. @ =DV, and V s an elementary abelian 2-group central in Q).
2. For S a Sylow 2-subgroup of M, S/1°(Z(S)) is an elementary abelian group.

3. Zo = Z°(Q). In particular, Z°(Q) is an elementary abelian group.
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Proof. This is the same statement as the previous without the proviso that G act faithfully on
. So let K be the kernel of the action of G on I'; a finite central 2-group, and let G'1, M1,S;
be the quotients of G, M, S by K. Set:

O = O2(My) Ly = O?(My)
Vi =[Q1, L1] Dy =Cgo,°(L1)

By the previous proposition our three claims hold for these groups. Note that Q1 = Q/K
and Ly = LoK/K. Thus V} = VK/K. We will check also that D; = DK/K. Certainly
DK/K < D;. Conversely, let D be the preimage of Dy in G. Then [D, Ly] < K so by Fact 2.1
[D,Lg] =1 and D° < D. As D° covers D, D < D°K < DK.

Ad 1. From @1 = D1V4 it follows that @ < DV K. Since ) is connected we conclude that
Q=DV.

Ad 2. Let Sy be the preimage of $31°(S1) in S. Then [S,Sp] < K. As S is connected and
K is finite, by Fact 2.1 we find Sg < Z(S). Further Sy/K is elementary abelian and ®(Sp°) is
connected, so Sp° is elementary abelian. Thus Sp° < Q1(Z(S)). Now ®(S) < Sy and ®(S5) is
connected so ®(S) < S5p° < Q°(Z(9)).

Ad 3. Let Z14 be Z, computed in 1. Tt suffices to check that 7, covers 71, and that Z°(Q)
covers Z°(Q1). Let A be the preimage in G of Z°(Q1). Then [A,Q] < K. As @ is connected,
A< Z(Q). Thus Z°(Q) covers Z°(Q1). The argument for 7, is similar. O

D The case b > 2

In this final section we eliminate the case b > 2. As b 1s even, we have b > 4. The case b > 6
leads more quickly to a contradiction, while the case b = 4 takes a closer analysis.

Notation D.1 Let (o, o) be a critical pair in T. A path of length b from o to o' is fized, and its
vertices are denoted by (o, a+1, ..., a+b) or, counting from the other end, (o/ —b,...,a'—1,a).

In the next Lemma we discuss the prolongation of a path linking a critical pair “to the left”
in a natural way.

Lemma D.2 (2.3, [27]) Let (o, ') be a critical pair in T'. Then there is a vertex § such that
d(e, 3) = 2 and:

(a) Zs £ G,
With such a choice of B we have:
(b) (O2(GgNGa), Zo) = Ga.
(¢) (B, —2) is a eritical pair,
(d) If b > 2 then [Zg, Zoi_2] < Z(G4).

Proof. Suppose first that 3 has been chosen satisfying (a) with d(«a, 3) = 2. Note that d(5, a') =
b+ 2 as a consequence of condition (a). Let A be adjacent to «, 5, and let S = O3(Gy) =
02(Go N Gg) by Lemma C.1. As A # a+ 1, S is distinct from O2(Gag1) = ZoQo. Thus
(S, Zor) covers Go/Qq and hence (S, 7,) = G,. This is condition (b). For (¢), note that
d(f,a’ —2) < b while Zg £ Gg{l,)_z as otherwise we would find Zg < O2(Gar—1) < Gor. Thus
(8, o — 2) is a critical pair. Thus (b) and (c) both hold.

If b > 2 then [Zai_9, Zo] = 1. As (8, &' —2) is a critical pair [Zg, Zor—2] < Zai_oN Zg. Thus
the group [Zs, Z,/_2] is centralized by Z, and also by S as S = Z,/_2Qs. Now (b) implies (d).

Accordingly we turn our attention to condition (a). Let A # av+ 1 be any other neighbor of
«. Then as seen above, while checking (b), we have (O2(G)), Zo) = Go. We will find 8 adjacent
to A so that Zg £ Gor. Then as 3 # «, we have d(«, 3) = 2.

23



Suppose toward a contradiction that Z3 < G, for every neighbor 8 of A, so that in fact
Zg < Gor N Garos for each such 8. Let T = O2(Gor N Garma) = O02(Gaic1) = ZoQor and set
Vi =(Zg : d(A, ) = 1). Then our hypothesis amounts to: Vi <T. As T = Z,Q this yields
Thus [Vi, Zat] € [Za, Zat] € Zo < Vi, and hence V), is normalized by Z,..

As V) is normal in G and (O32(Gy), Z4) = Gq, we find that V) is normalized by G, as well.
This contradicts Lemma A.2 O

As a matter of notation, when we apply the foregoing lemma, we will call the vertex g which
is selected “a — 2”. Formally, this has no special meaning, but it serves as an aide-mémoire.

Proposition D.3 (2.4, [27]) b < 6.

Proof. Suppose towards a contradiction that 6 > 6. Fix a vertex § = a — 2 as afforded by
Lemma D.2; and let a common neighbor of o and o —2 be called ao—1. We consider the following
groups:

Va= (285 0 Vams = (25°)Zurs

Then V, <« Gy and Vy_9 1G9, As b > 2 we have V,, < @y and Vy_2 < Qu_s.
(1) [Qa, Vo] < Z(Ga).

It suffices to check that [Qu, Za—2] < Z(Ga). As Zg_2Qa—2 is a Sylow 2-subgroup of G, we
have [Qu, Za—2] < [Zar—2Qa—2, Za—2] = [Zar—2, Za—2] and condition (d) of Lemma D.2 applies.

The idea now is to “reflect” the “path” (a—2,... a’) around o — 2 and to consider the view
from within the resulting long “path”.

As (@ —2,a’ —2) is a critical path, Z,/_» covers a Sylow 2-subgroup of Gy_s/@ -2 and thus
we may choose an element ¢ € G_2 such that Go_o = (Zgr_a, Zé,_2>Qa_2. We consider the
sequence of vertices ((a' —2)!, (o/ —4)", ... a', 0 —2,a,...,a’ —2) in which @ — 2 is the central
point, and only the even terms, as indicated, play any real role.

(2) Vo < G(al_z)t.

We check first that V,, < G(are)yr. For g € Gy we have d(a, (a —2)9) <2 and d(a -2, (o’ —
6)") = d(a—2,0’ —6) <b—4 and thus d((a —2)9, (o/ — 6)") < b. Thus Z(,_2ys < G(a—sy and
Va < G(oc’—6)t~

Now suppose toward a contradiction that Vi, £ G(q_2)r. Then V, £ Qar—a)t. Thus we
may fix 7, ¢ = 4 or 6, so that Vo, < G(ar—syr while Vi, £ Q(ar—sy¢. The two possibilities can be
analyzed to some extent simultaneously.

We fix B € (a — 2)% U {a} such that Z5 £ Q(ar—iyr; and we take § = a if possible. Set
R= [Z@, Z(oc’—i)t]~

As Zg < Ga—jyr, we have R < Z_jp. As d((a' — i), (o' — 2)") < 4 < b we have
(R, Z(a—2)t] < [Z(ar—iyt, Z(ar—2yt] = 1. Thus R centralizes Z(or_o)e.

Now d((a' — i), a) < (b— i) +4 < bso Za_ip < Go and thus Ziy_je < 02(Gao1). In
particular R < O2(Gq-1).

We now consider two cases separately:

(Case 1) Ziar—iyt < Qa.

Then R = [Z5, Ziar—iy] < [Va, Qal < Z(Go) by (1). By the choice of t, Gooo = (Ga2 N
Go, Z(ar—2yt) and thus R < Z(Go_2) as well. As 3 € (o — 2)%e U {a}, we have R < Z(Gg).

On the other hand we have Zi,_;)¢ < Qo < Gp acting nontrivially on Zg. As Zg =
Z3/Cz,(Gp) is a natural module for Gs = G3/Qs, the commutator R is nontrivial in Zs, and
thus R £ Z(Gg), a contradiction.

Now suppose:

(Case 2) Ziar—iy % Qa.
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As d((a’ — i), a) < (b—1i)+4 we conclude that i = 4 and that (a, (o/ —)") is a critical pair.
Hence § = a.

Now R = [ZQ,Z(a/_i)t] S [VQ_Q,QQ_Q] S Z(Ga_z) by (1)

We have G < (O2(Ga-1), Zor) and hence Gyt < <02(Ga_1)t,Z(a1)t> But R centralizes
Go—s, hence Os(Goo1)t, and d((o/ —4)',a’") =4 < b, 30 R < Z(ai_ayt < Qun and [R, Zyn] = 1.
Thus R centralizes G, and as t centralizes R, we have R < Z((G,) as well. But 7, =
Z4/Cz,(Ge) is a natural module for Go/Q4, and R = [Z,, Z(ar—iyt] With Z(41_s)1 acting non-
trivially, a contradiction.

(3) Vay, Za—270, and Qo N Qo2 are normal in G _s.

Zo—2Q(ar—2y is a Sylow 2-subgroup of G(/_s): as (o — 2,a’ — 2) is a critical pair; but this
is a subgroup of V,Q(a/—2y which is a 2-group by point (2). Hence Vo, < Z4_2Qar—2)t.

G2 18 generated by G,_o NG, and Zar—2)t-

Now G, normalizes V,, and [Vi, Z(ar—2y1] < [Za—2Qar—2)t, Z(ar—2)t] < Za—2 < V. Thus V,,
is normal in G _».

Again, Gy_» N G normalizes Z,_»7, and by the calculation of the previous paragraph
[Z(ar=2yts ZaZa—2] < [Zar=2)t, Va] < Za—a 80 Z(gqr_oyt also normalizes Z,_97,. Thus Zo_27,
is normal in G _».

Finally, Qa2 N Qo = Ca,_,(ZaZa—2).

(4) ro N ro—Z < Goc~

Let X be the normal closure of Qn_2 N Q, in G. Then X < @, and our claim is that
X S ro—2~

Let YV = [V, Qo N Qu—2]. By (1) YV is central in GG, and thus Y = [V, X] as well.

Since Y is central in (G, it centralizes a Sylow 2-subgroup of G,_s. But Y is normal in
Go—2 by (3), so YV is central in Go_s. Thus [Zy_2, X] < [Va, X] < Z(Ga—2). As Zyen =
Zia—2/Cz.,_,(Gg_2) is a natural module and [Zo—2,X] =0, we find X < Qn_> as claimed.

The final contradiction is derived as follows. As « — 1 is conjugate under G, to a + 1,
(ae — 2) is conjugate under G to a neighbor A of & + 1. Suppose A = (o — 2)¢ with ¢ € G,.
As d(A o' —2) < b, we have Zp_9 < Qo N @y = (Qa N Qa—2)? = Qo N Qa—2 by (4). Then

[Zar—2, Za—2]) = 1, while (o — 2,0’ — 2) is a critical pair, a contradiction. O

Proposition D.4 (3.3, [27]) b # 4.

Proof. Suppose toward a contradiction that & = 4. Fix a critical pair (o, a’). Choose o — 2,
and then « — 4, in accordance with Lemma D.2 so that d(a, o — 2) = d(a — 2, — 4) = 2 and
(a —4, ) and (& — 2, + 2) are critical pairs.

(1) Lo = (Zoc n Zoc+2)[ZocaZoc—4]

This reflects the fact that the module Z, = Za/Cz. (Gy) is a natural module. Z,_4 covers
a Sylow 2-subgroup of Go/Qa 50 [Za_4, Zo] is a 1-dimensional subspace of this module, and
similarly [Z,/, ZQ] is a 1-dimensional subspace. As Z, and Z,_4 generate (G, modulo @, by
Lemma D.2(b), we find Z, = [Zo—4, Zo] ® [Zar, Za].

As [Zor, Zo) < Zor N 7y centralizes Zo Qo = O2(Gay1), we have [Zor, 7] < 7o N Zgy2 and
(1) follows.

We introduce the following additional notation.

U= ZocZoc—ZZoc+2; D = ro—4 N ro—Z N ro N ro+2 N ro’

We observe that U is a subgroup with U’ = [Z,_9, Zo42] # 1, as Z, centralizes all three factors
and [Zo—2, Zot2] < Za—o N Zyga, since b = 4.
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(2) Qu=DxU.

This is similar to the proof of point (4) in Proposition C.2. As Z,_» < Qo < O3(Gay1) =
Zra—2Qaya2 wefind Qo < Z4-2(QoNQat2). Similarly using successively QoaNQut2 < 02(Gags) =
ZoQor and roonc+20ro’ < OZ(Goc—l) = Zoc+2ro—2 we find Qo < U'(QQ—ZQQQQQQ+ZQQQ’)~

For the final step, ro—Z N ro N ro+2 N ro’ < OZ(GOC—B) = Zocro—4 = (Zoc N Zoc+2)ro—4a
using (1), and as Zo N Za42 < Qa—2NQaNQay2NQqr, we find Qo = U - D, and the two factors
evidently commute.

(3) UZ(Ga) < Ga.

Set
= <Zoc—4a Zoc’>

By Lemma D.2(b), G4 = FQq. By (2) [U,Q4] < U so it remains to be seen that [F,U] <
UZ(Gy).

Let Uy = U[U, F]. Then Uy = U(Uy N D) Now Uq centralizes D and D centralizes F and
U,s0 UyND < Z(Gy), and (3) holds.

(4) U=UZ°(Ga)/Z2a7°(Gy) is a nontrivial G /Qq-module.

Pomt (3) implies that G, /Q4 acts on U. Tt remains to show that this action is nontrivial.
If (¢ —1)¢ = a+1 we will show that g acts nontrivially. Let A = («—2)¢. Then d(A, a+2) < 2
and hence [Zy, Zot2] = 1. As [Za_2, Zas2] # 1 it follows easily that the action of g on U is

nontrivial.

(5) Za acts quadratically on U.

U= ZQ_QZQ+2 where the bar refers to factoring out 7,7°(Gy). As Zy centralizes Z,42 it
suffices to consider the action on Z,_s.

Now [Zg—2, Za] < Qat2. As Qag2 < O02(Go—1) = Z4Qor, we have [Qat2, Zor] < [Zo, Zor] <
T Thus [Zg—2, Zar, Zor] < Zg and (5) follows.

(6) U is a natural module for F/Cp(U).

Here V' = (Zg_4,Zo) as in (3). As Q. acts trivially on U and FQu = G, F/C'F(U) ~
Go/Q i of type SLs.

We apply Corollary 2.41 with G = F/Cp(U) and T = Z,. In view of point (5), we need
only check that rk (I /Cg(Zar)) < tk Z4s, which is clear, to conclude that U /Cg (F) is a natural
module. But tkU < 2f where f is the rank of the base field, so U must itself be a natural
module.

(7) Z°(Gy) < Zg.

We know 7°(G,) < Qo. We need to show that Z°(Gy,) is elementary abelian. Let S =
02(Gag1) = ZoQq. Tt suffices to show that Z°(S) is elementary abelian.

Z(S) € Qo and UN D < Z(Gy) so Z(S) = [Z(S) N U] « S)ﬁD By (6) rk(U) =
rk (Za—2) + 1k ( a+2) o [UNZ(Ga)]° < Zy. Hence ®(7°(5)) § Z(D) < Z(Gy). Our original
hypothesis (P) forces <I>(Z°(S)) =1 and (7) follows.

After these preparations we reach a contradiction as follows. By (7) the action of G, on U
is induced by an action on U. By (6) this action is transitive on (U)*. If u € U \ Z, is an
involution, then the class uZ, consists entirely of involutions. By transitivity of the action, U
is elementary abelian. But U’ # 1.

This contradiction shows that b # 4. O

Proof of Theorem 3.1. Lemma B.3 and Propositions C.2, D.3, and D.4 yield the result. O
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