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� Introduction

According to a long�standing conjecture in model theory� simple groups of �nite Morley rank
should be algebraic� The present paper is part of a series aimed ultimately at proving the
following�

Conjecture � �Even Type Conjecture� Let G be a simple group of �nite Morley rank of
even type� with no in�nite de�nable simple section of degenerate type� Then G is algebraic�

An in�nite simple group G of �nite Morley rank is said to be of even type if its Sylow ��
subgroups are in�nite and of bounded exponent� It is of degenerate type if its Sylow ��subgroups
are �nite� If the main conjecture is correct� then there should be no groups of degenerate type�
So the �avor of the Even Type Conjecture is that the classi�cation in the even type case reduces
to an extended Feit�Thompson Theorem� Those who are skeptical about the main conjecture
would expect degenerate type groups to exist� The Even Type Conjecture con�rms that this is
the heart of the matter�

We believe that it is realistic to aim at a proof of the Even Type Conjecture with existing
tools� In the present paper we obtain the following results�

Theorem ��� �Pushing Up�
Let G be a simple K��group of �nite Morley rank and of even type� Q a unipotent ��subgroup

of G such that Q � O�	N
�	Q

� with B	N�	Q
�Q
 � SL�	K
 for some algebraically closed �eld

K of characteristic �� Then N�	Q
 contains a Sylow� ��subgroup of G�

Theorem ��� �C�G�T��
Let G be a simple K��group of �nite Morley rank of even type with T a Sylow� ��subgroup�

If C	G� T 
 � G then G has a weakly embedded subgroup�

The precise meaning of these results� and the relevant general de�nitions� will be given in
the next section� They are natural analogs of results in �nite group theory which were useful in
the classi�cation of the �nite simple groups� In our context we view them as preparatory to an
analysis of a minimal counterexample by the method of amalgams�

The key to all the results of the present paper is the following analog of a result of Baumann�

Theorem ��� part � �Baumann� 	
��
Let G be a group of �nite Morley rank of even type� Let M be a de�nable connected subgroup

of G such that M � M�O�	M 
 �� SL�	K
 with K an algebraically closed �eld of characteristic
�� Assume that F �	M 
 � O�	M 
� If S is a Sylow ��subgroup of M then it contains a nontrivial
de�nable connected subgroup which is normal in M and NG�	S
�

Stellmacher showed in ��� that this result� or more exactly the structural analysis needed
for this result� can be carried out by the �amalgam� method 	cf� ���
� which by its nature goes
over quite smoothly to our context� The proof of our analog of Stellmacher�s theorem� which
follows ���� is given in an Appendix� the main point being that certain issues of connectivity do
not disrupt the argument signi�cantly� In addition� a result of Timmesfeld 	���
 is very helpful
as there is no general represention theory for representations of SL� of �nite Morley rank�

The present paper is a sequel to ��� ��� �� �� ��� �� its results will be exploited in ��� to
eliminate certain components in �parabolic subgroups� which are the main obstruction to un�
dertaking a classi�cation of even type groups 	under a K��hypothesis
 via the amalgammethod�
All we need from previous papers in the series are the main results of ��� and ��� reviewed in
the next section� Modulo standard group theoretic facts and some general properties of groups
of �nite Morley rank the present paper is self�contained�
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� Preliminaries

In this section we will review the main facts required for the present paper� We use some of
the basic facts and notions as given in ��� without explicit reference� but the more substantial
points are all given explicitly below� We have included a �rst subsection on some basic model
theoretic notions which are used in this paper� We hope that this will provide some background
for the reader who wants to concentrate on the group theoretic aspects of the paper� The four
subsections which follow the �rst one review some of the general theory of groups of �nite Morley
rank� while the last four address more specialized topics directly related to the concerns of the
present paper�

��� Model theory

In model theory� one studies various structures by means of their de�nable subsets� Although the
model theoretic de�nition of a structure corresponds to what a mathematician intuitively has in
mind� it is appropriate to de�ne it rigorously� A structure consists of an underlying set� called the
universe� together with an indexed family of distinguished elements of the universe� an indexed
family of relations on the universe� and an indexed family of functions with domain a cartesian
power of the universe and range contained in the universe� Thus one can think of a group as a
structure where the underlying set is the set of the elements of the given group together with
a distinguished binary function� namely the group multiplication� and a constant� namely the
identity of the group� Evidently this is not the only way to consider a group as a structure� we
could include the inverse function as part of the group structure� In the �rst version� a group is
given by its multiplicative structure 	this is the point of view normally adopted when de�ning
homomorphisms
� while in the second version the inverse function is part of the structure as well
	this is the point of view normally adopted when de�ning subgroups
� In the long run one may
switch freely between the various points of view available� but when setting up the foundations
of model theory� it is convenient to work with structures of a de�nite type�

More substantial inclusions to a structure can be done in special cases� As an example� one
can add to the structure consisting of the set of real numbers together with addition a unary
relation denoting the positive numbers� This would be an example of a group with additional
structure� In model theory the word group is generally used in this more general sense�

The signature of a structure consists of the three index sets involved� together with a function
which speci�es for each index i corresponding to a relation or function� the number of variables
involved in the corresponding relation or function� its arity� With a class of structures with
a �xed signature one can associate a �rst�order language� A �rst order language L is a set of
symbols together with some rules which distinguish the strings of symbols which are acceptable
from those which are not� The symbols can be divided into three categories� those which name
the elements of the common signature� the logical symbols� i�e� equality 	�
� negation 	�
�
disjunction 	�
� conjunction 	�
� the universal quanti�er �� the existential quanti�er �� the
variables� There are two main rules� no in�nite conjunctions or disjunctions are allowed� and
only variables are quanti�ed� With these symbols and rules one can write �rst�order formulas
	i�e� acceptable strings of symbols
� The structures associated with a �xed �rst�order language
L are called L�structures�

An example of a language is that of monoids� L � f�� �g� Here � denotes the binary multipli�
cation function while � denotes the identity in the structure� One can expand this language to
L� � f�� ��� �g where �� is a symbol for the unary inversion function� This richer language
can be seen as that of groups� The following example is a �rst�order formula in the language
of monoids 	or groups
 which express the property of being central� �x 	y�x � x�y
� In other
words in a structure corresponding to this language 	i�e� a monoid
� any element satisfying this
�rst�order formula would be central in the structure containing it� This is a de�nition for the
central elements of a group�

In general a set S is said to be de�nable in an L�structure M if S �Mn� where M denotes
the underlying set ofM� and the elements of S are exactly those which satisfy a given �rst�order
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formula in the language L� The above example shows that the center of a group is a de�nable
set�

It is also possible to extend the language L by adding constant symbols which name elements
of a �xed L�structure� These are called parameters� The expansion of a language through the
addition of parameters 	or any expansion in general
 can eventually allow more sets to become
de�nable� An important example of this in the case of groups is the centralizer of a group
element� If we restrict the language to that of groups then there is no reason why centralizers of
elements should be de�nable but if g is a group element and one adds a constant symbol cg to
the language to name g� then x�cg � cg�x is a �rst�order formula which de�nes the centralizer
of g�

It is useful to note that a certain set can have more than one de�nition� For example if the
group SL�	C 
 is seen as an L�structure with L � f�� ��� �g� then Z	SL�	C 

 is also de�ned by
the formula x�x � �� If K is a �eld of characteristic � and B	K
 denotes the group of ��� upper
triangular matrices over K with determinant �� then the centralizer of a nontrivial unipotent
element can either be de�ned using an additional parameter naming this element� or just by the
formula x�x � ��

Once the notion of a de�nable set is established one can de�ne de�nable relations and func�
tions in the natural way� those relations or functions whose graphs are de�nable sets in the given
structure� A well�known example of this is the equivalence relation of being in the same coset
of a de�nable subgroup� The corresponding coset space is in fact an example of an important
notion in model theory� an interpretable set� If M is an L�structure then a set is said to be
interpretable in M if it is obtained from a set de�nable in M after factoring out a de�nable
equivalence relation�

On some structures it is possible to introduce a rank function rk from the set of sets inter�
pretable in the given structure to the set of natural numbers which satis�es the following four
axioms�

A If A is an interpretable set� then rk 	A
 	 n � � if and only if there are in�nitely many
pairwise disjoint� nonempty� interpretable subsets of A whose ranks are at least n�

B If f is an interpretable function from A into B� then for each n 
 N� the set fb 
 B �
rk 	f��	b

 � ng is interpretable�

C If f is an interpretable function from A onto B whose �bers have all the same rank n� then
rk 	A
 � rk 	B
 � n�

D If f is an interpretable function from A into B then there is an integer m such that for any
b 
 B� the set f��	b
 has in�nitely many elements as soon as it has at least m elements�

A structure which admits such a rank function is said to be a ranked structure� It is worth
emphasizing that a ranked structure is not necessarily what is known as a structure of �nite
Morley rank in model theory� The above axiomatization 	more precisely axioms A�B�C in some
form
 was introduced by the second author in order to concentrate on the algebraic properties of
groups of �nite Morley rank� Later Bruno Poizat made the necessary organization of the axioms
and proved the equivalence of the notion of a ranked group 	here the word group is taken in the
more general model theoretic sense mentioned above
 and that of a group of �nite Morley rank
	���� Corollaire ���� and Th�eor�eme ����
�

By a theorem of Macintyre 	���
� �elds of �nite Morley rank are algebraically closed� As for
groups� �nite groups are of Morley rank �� In this article are studied the in�nite ones of which
algebraic groups over algebraically closed �elds form one of the most important classes� Indeed
the only known in�nite simple groups of �nite Morley rank are simple algebraic groups over
algebraically closed �elds� which gave rise to the conjecture in the introduction of this article�

Admitting Morley rank is a very strong condition on a group� which is inherited by its de�n�
able subgroups� Since the natural numbers are well�ordered� one cannot have in�nite descending
chains of de�nable subgroups 	the descending chain condition
� This allows one to de�ne a ro�
bust notion of connected component of a group G of �nite Morley rank� the intersection of the
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de�nable subgroups of �nite index� This intersection� denoted by G�� is de�nable thanks to the
descending chain condition� It is exactly the smallest de�nable subgroup of �nite index in G�
The descending chain condition allows one to de�ne also the de�nable closure of an arbitrary
subset X of G� Denoted by d	X
� this is the intersection of the de�nable subgroups of G which
containX� Again this is a well�de�ned and de�nable intersection� As a result one can talk about
the connected component of an arbitrary subgroup H of G� H� is de�ned as H � d	H
��

Before �nishing this review of relevant model theory� it is worth emphasizing that the above
axiomatization of Morley rank in the context of groups has a very practical value in that the
rank function is a useful computational tool� An illustration of this phenomenon is the following
rank equality when G is a group of �nite Morley rank and H is a de�nable subgroup�

rk 	G
 � rk 	G�H
 � rk 	H
�

��� Generalities

The following two statements are the corollaries of Zil�ber�s Indecomposability Theorem which
we will need in the paper�

Fact ��� �	���� Corollaries ���
 and ����� Let G be a group of �nite Morley rank

�� If H is a de�nable connected subgroup of G and X is any subset in G then �H�X is
de�nable and connected�

�� The subgroup of G generated by any family of de�nable connected subgroups is again de�
�nable and connected� and it is the setwise product of �nitely many of them�

The following corollary will be useful in the appendix�

Corollary ��� Let G be a group of �nite Morley rank and A and B de�nable subgroups� If A
is also connected then hA�Bi is a de�nable subgroup of G�

Proof� Note that hA�Bi � hAb � b 
 BiB� Since hAb � b 
 Bi is de�nable by Fact ��� �� hA�Bi
is also de�nable� �

The following de�nition contains some fundamental terminology which is used frequently in
this paper and in many papers related to the classi�cation project of which this paper is part�

Denition ��� �� A section of a group G is a quotient of the form H�K where H and K
are subgroups of G and K � H� Such a section is said to be de�nable if H and K are
de�nable�

�� A K�group is a group G of �nite Morley rank such that every in�nite de�nable simple
section of G is isomorphic to an algebraic group over an algebraically closed �eld�

�� A K��group is a group G of �nite Morley rank such that every in�nite proper de�nable
simple section of G is isomorphic to an algebraic group over an algebraically closed �eld�
Equivalently� G is either a K�group� or a simple group all of whose de�nable subgroups are
K�groups� As we are concerned here with techniques relevant to an inductive proof of the
Even Type Conjecture� we con�ne ourselves in practice to the study of simple K��groups
of even type�

��� Sylow theory

There is a good Sylow theory for the prime � in our context�

Fact ��� �	���� �� The Sylow ��subgroups of a group of �nite Morley rank are conjugate�
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�� If S is a Sylow ��subgroup of a group of �nite Morley rank then S is nilpotent�by��nite and
its connected component is the central product of a de�nable� connected� nilpotent subgroup
of bounded exponent and a divisible� abelian ��group� Moreover� these two subgroups are
uniquely determined�

This provides a rather good analog to the general structure of the connected component of
a Sylow ��subgroup in an algebraic group� where depending on the characteristic we may be
dealing with a maximal unipotent subgroup� or the ��torsion in a torus 	semisimple elements
�

Accordingly we adopt the terminology suggested by the algebraic case�

Denition ��� �� A unipotent subgroup is a connected de�nable subgroup of bounded expo�
nent �in our context� typically a ��group and hence nilpotent by Fact ���	�

�� A torus is a de�nable divisible abelian group� For any prime p� a p�torus is a divisible
abelian p�group� �A nontrivial p�torus is not de�nable� but its de�nable closure is a torus�	

�� A group of �nite Morley rank is of even type if the connected component of a Sylow ��
subgroup is unipotent and nontrivial�

�� A group of �nite Morley rank is of odd type if the connected component of a Sylow ��
subgroup is a nontrivial ��torus�


� A group of �nite Morley rank is of mixed type if the connected component of a Sylow ��
subgroup is the central product of a nontrivial unipotent subgroup and a nontrivial ��torus�

�� A group of �nite Morley rank is of degenerate type if the connected component of a Sylow
��subgroup is trivial �that is� the Sylow ��subgroups are �nite	�

The conjecture is that degenerate type and mixed type do not arise� The nonexistence of
in�nite simple groups of �nite Morley rank of degenerate type would be a strong form of Feit�
Thompson for this context� This is by far the hardest case to deal with� On the other hand the
mixed type case can be eliminated a priori when working inductively�

Fact ��� �	���� A simple K��group of �nite Morley rank is not of mixed type�

Denition ��� Let H be a group of �nite Morley rank�

�� The connected components of Sylow ��subgroups are called Sylow� ��subgroups�

�� B	H
 denotes the subgroup generated by the unipotent ��subgroups of H� �B	H
 is con�
nected by Fact ��� �	�

�� A subgroup of H is called a ���group if it contains no elements of order ��

Fact ��
 �	��� Proposition ���� Let G � GT be a connected K�group of even type with G and
T de�nable and connected� Assume that T is a ���group which acts on G de�nably� Then T
leaves invariant a Sylow� ��subgroup of G�

Corollary ��� Let G be a connected K��group of even type and T � G a torus� If U is a
T �invariant nontrivial unipotent ��subgroup of G then U is contained in a T �invariant Sylow�

��subgroup of G�

Proof� We consider N�	U 
 with U a maximal nontrivial T �invariant unipotent ��subgroup�
Then N�	U 
�U is a K�group to which we can apply Fact ��� and the normalizer condition if U
is not a Sylow� ��subgroup of G in order to get a contradiction� �
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��� Weak embedding

Denition ���� Let G be a group of �nite Morley rank� A proper de�nable subgroup M of G
is said to be weakly embedded if it satis�es the following conditions�

	i
 Any Sylow ��subgroup of M is in�nite�

	ii
 For any g 
 G nM � M �M g has �nite Sylow ��subgroups�

Jaligot has proved the following classi�cation theorem�

Fact ���� �	���� Let G be a simple K��group of �nite Morley rank and of even type� with a
weakly embedded subgroup� Then G is of the form SL�	K
 for some algebraically closed �eld K
of characteristic ��

This yields�

Fact ���� �	��� Proposition ����� 	��� Proposition ����� 	���� Fact ���� Let G be a K��
group of �nite Morley rank of even type and let �	G
 be the graph whose vertices are the unipotent
��subgroups of G� with edges between any two distinct subgroups with in�nite intersection� If
�	G
 is disconnected then B	G
 � SL�	K
 for some algebraically closed �eld K of characteristic
��

Proof� We may assume G � B	G
 and in particular G is connected� By the de�nition of a
K��group either G is a K�group or a simple group� If it is a K�group then Proposition ���� in
�� and Fact ��� in ��� prove the statement� If it is a simple group then the arguments used
to prove Proposition ���� in �� show that the stabilizer of a connected component of �	G
 is
weakly embedded in G� Then Fact ���� yields the stated identi�cation� �

Corollary ���� Let G be a K��group of �nite Morley rank of even type and let ��	G
 be the
graph whose vertices are the Sylow� ��subgroups of G� with edges between any two distinct Sylow�

��subgroups with in�nite intersection� If ��	G
 is disconnected then B	G
 � SL�	K
 for some
algebraically closed �eld K of characteristic ��

Proof� If two vertices S� T of ��	G
 are joined by a path in �	G
� then extending each vertex
along that path to a vertex of ��	G
� we see that S and T lie in the same connected component
of ��	G
� �

Denition ���� Let G be a group of �nite Morley rank�

�� A ��local subgroup of G is the normalizer of a nontrivial de�nable ��subgroup of G�

�� O	G
 is the largest connected de�nable normal ���subgroup of G�

�� O�	G
 is the largest normal ��subgroup of G� If G is of even type� this is de�nable and
nilpotent�

The following result was proved in �� though stated somewhat di�erently� our formulation
comes from ���

Fact ���� �	��� Let G be a simple K��group of �nite Morley rank of even type and H a ��local
subgroup of G with O	H
 � �� Then G has a weakly embedded subgroup�

Since the stated con�guration does not occur in groups of the form SL�	K
� by Jaligot�s
classi�cation theorem we have�

Corollary ���� Let G be a simple K��group of �nite Morley rank of even type and H a ��local
subgroup of G� Then O	H
 � ��
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��� Miscellany

Denition ���� Let G be a group of �nite Morley rank of even type� E	G
 denotes the sub�
group generated by the de�nable subnormal quasisimple �i�e�� perfect and simple modulo center	
subgroups of G� This is a �nite central product of quasisimple groups we are more interested in
E�	G
� the subgroup generated by the connected subnormal quasisimple subgroups of G�

Note E�	G
 � B	G
� In addition E�	G
 is a central product of connected de�nable qua�
sisimple subgroups 	���
� If G is connected then E	G
 � E�	G
�

Denition ���
 Let P be a nilpotent p�group of bounded exponent� Then the Frattini subgroup
�	P 
 is the subgroup generated by P � and fxp � x 
 Pg� In the context of groups of �nite Morley
rank� if P is de�nable then �	P 
 is de�nable since on the one hand P � is de�nable� and on the
other hand �	P 
�P � is clearly de�nable in the quotient�

�
� and �� will have their usual group�theoretic meaning� if P is a p�group then ��	P 
 �

hxp � x 
 P i and ��	P 
 � hx 
 P � xp � �i�

Fact ���� Let N be a de�nable connected nilpotent p�group of bounded exponent� Then �	N 

is de�nable and connected�

Proof� N � is connected 	Fact ��� �
� and �	N 
�N � � ��	N�N �
� �

As usual� for any group G of �nite Morley rank we write �	G
 for the solvable radical of G�
the largest normal solvable subgroup of G� It is de�nable and generated by the normal solvable
subgroups of G 	Theorem ��� in ���
�

Fact ���� �	��� Let G be a connected nonsolvable K�group of �nite Morley rank� Then G��	G

is isomorphic to a direct sum of simple algebraic groups over algebraically closed �elds� In
particular the de�nable connected ���sections of G are solvable�

Fact ���� �	��� Let H be a connected K�group of �nite Morley rank of even type such that
O�	H
 � �� Then H � O	H
 �E	H
�

Fact ���� �	��� Let G be a perfect group of �nite Morley rank such that G�Z	G
 is a simple
algebraic group� Then G is an algebraic group� In particular� Z	G
 is �nite 	��� Section ���

�

Corollary ���� If G is a K�group of �nite Morley rank then Z	E	G

 is �nite�

Fact ���� �	��� Let L be a K�group of even type with L � L�� � � ��Lt� where the Li are simple
algebraic groups� If X is a de�nable simple subgroup of L normalized by a Sylow ��subgroup of
L then X � Li for some i�

We will apply this in the case in which L is a central product of quasisimple algebraic groups�
and K is quasisimple� but this amounts to the same thing�

Fact ���� �	��� Let H be a connected K�group of �nite Morley rank and even type� and L a
de�nable quasisimple subgroup of H such that N�	L
 contains a Sylow� ��subgroup of H� Then
L�H�

Proof� Let S � N�	L
 be a Sylow� ��subgroup of H� Let  H � H�O�	H
� By Fact ����
 H � E	  H
 � O	  H
 and by Fact ����� or the remark following�  L is normal in E	  H
 and hence
in  H� In terms of H we have LO�	H
�H� But O�	H
 � S so �L�O�	H
 � L�O�	H
 � Z	L

as L is quasisimple� As L is perfect� �L�O�	H
 � � by the three subgroups lemma� Thus
L � E	LO�	H

 �H� �

Fact ���� Let H be a connected K�group of even type� Then O�	H
 is connected�

Proof� By Fact ���� and Fact ���� H���	H
 is a central product of algebraic groups over
algebraically closed �elds of characteristic �� hence the problem reduces to the case in which H
is solvable and connected� In this case it is given in ���� Theorem ����� �
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��� Borel�Tits

Fact ���� �	��� cf� 	���� Corollary ���� A� Let G be a reductive algebraic group and let U be
a closed unipotent subgroup of G� Then NG	U 
 is contained in a parabolic subgroup P	U 
 of G
such that U � RU	P	U 

� where RU denotes the unipotent radical�

Lemma ���
 Let X be a K�group of even type and Y a de�nable connected subgroup of X such
that Y � N�

X 	O�	Y 

� Then Y contains a Sylow� ��subgroup of X�

Proof� We may suppose that X is connected� We set Q � O�	Y 
� By Fact ����� Q and
O�	X
 are connected� The subgroup QO�	X
 is a connected ��subgroup� hence nilpotent� Thus
NO��X�

�	Q
 is nontrivial� As this group is normalized by Y � it is a subgroup of Q� Hence�
NQO��X�	Q
 � Q and thus O�	X
 � Q� Thus we may factor out O�	X
 and assume that
O�	X
 � �� By Fact ����� X � E	X
 �O	X
� We may therefore assume that X � E	X
�

As Q � O�	QZ	X

� NX	QZ	X

 � Y and hence we may pass to  X � X�Z	X
� a direct
product of simple algebraic groups over algebraically closed �elds of characteristic �� This is
almost the situation to which Fact ���� applies� though as the base �elds of the factors may vary
one cannot say that this is literally so� While it would su!ce to apply that result to each factor�
we may argue more directly as follows�

Let X� be an elementary extension of X in which each direct summand is uncountable� and
of �xed cardinality� Then the base �elds of the factors may be identi�ed and X� becomes an
algebraic group over an algebraically closed �eld of characteristic �� Thus after replacing X by
X� we may suppose that X is itself algebraic� Then the condition on Y implies that Q is Zariski
closed and hence by Fact ���� Y is contained in a parabolic subgroup P of X whose unipotent
radical U contains Q� Then NU 	Q
 � O�	Y 
 � Q so U � Q and Y is a parabolic subgroup of
X� �

��� C�G�T 	

Denition ���� Let G be a group of �nite Morley rank� T a subgroup �typically a Sylow� ��
subgroup	� Then C	G� T 
 is the subgroup of G generated by all subgroups of the form NG

�	X

where X � T is de�nable� connected� and invariant under the action of NG

�	T 
�

This is the notion to which we refer in the C	G� T 
 classi�cation theorem stated in x�� It
would be somewhat more natural to replace this by the following�

Denition ���� Let G be a group of �nite Morley rank and T a de�nable subgroup of G�

�� A subgroup X of T is said to be continuously characteristic in T � relative to G� if it is
invariant under the action of all connected groups of automorphisms of T which can be
interpreted in G�

�� C�	G� T 
 is the subgroup of G generated by NG�	X
 as X varies over all de�nable� con�
nected� continuously characteristic subgroups of T �

Evidently if X is continuously characteristic in T relative to G then it is invariant under
the action of NG�	T 
� In particular C�	G� T 
 � C	G� T 
� Thus the version of the C	G� T 
�
theorem based on C�	G� T 
 is stronger� Furthermore it is true� and can be proved by paying
more attention to issues of de�nability in the proof of Stellmacher�s theorem� However as the
version given here covers all intended applications� we leave this point aside�

��	 Abelian Sylow subgroups and standard components

The following two facts were proved in �� under a restrictive hypothesis 	�tameness�
 which can
now be eliminated using Jaligot�s classi�cation 	Fact ����
� This is clear from the presentation in
��� where the theorems were given explicitly in the form of the existence of a weakly embedded
subgroup in a minimal counterexample� in the absence of a tameness hypothesis�

�



Denition ���� Let A � B � G be three groups� Then A is said to be strongly closed in B
�relative to the ambient group G	 if for any elements a 
 A� g 
 G� if the conjugate ag lies in B
then it lies in A�

Fact ���� �	�� ���� Let G be a simple K��group of �nite Morley rank and of even type� Suppose
that G contains an in�nite de�nable abelian subgroup A which is strongly closed in a Sylow� ��
subgroup of G� Then G � PSL�	K
 with K an algebraically closed �eld of characteristic ��

Denition ���� Let G be a group of �nite Morley rank� and L a quasisimple de�nable subgroup�
Then L is said to be a standard component for G if�

�� C	L
 contains at least one involution

�� For any involution i 
 C	L
� L is a component of C�	i
 �i�e�� L is normal in C�	i
� and
is accordingly a factor of E	C�	i

	�

Fact ���� �	�� ���� Let G be a simple K��group of �nite Morley rank and of even type� Suppose
that G has a standard component L of the form SL�	K
 for some algebraically closed �eld of
characteristic �� Let U be the connected component of a Sylow ��subgroup of C	L
 and let A be
a Sylow ��subgroup of L� If U is nontrivial then AU is a Sylow� ��subgroup of G�

As far as Fact ���� is concerned� we will only make use of the case in which the Sylow�

��subgroups of G are themselves abelian�

��
 Properties of SL�

The material of this subsection is needed only to carry out the proof of an analog of Stellmacher�s
pushing�up theorem in the �nite Morley rank context� We need essentially the same facts that
Stellmacher uses in the �nite case� relating to representations of SL� over the prime �eld� In
our case these will be in�nite dimensional representations and some care must be taken on that
account� The following result of Timmesfeld is helpful in this connection�

Denition ���� Let G be a group and V an elementary abelian ��group on which G acts� and
A a subgroup of G� The action of A on V is said to be quadratic if �V�A�A � ��

Fact ���� �	���� Proposition ���� Let V be a ZX�module where X � SL�	K
 with K a �eld�
Suppose the following�

��	 CV 	X
 � � and �V�X � V

��	 �V�A�A � �� where A is a maximal unipotent subgroup of X�

Then for some �eld action on hvX i� the vector space hvX i is a natural module for each
v 
 CV 	A
��

Fact ���� �	���� If K is a �eld of �nite Morley rank� every de�nable subgroup of GL�	K
 is
either solvable�by��nite or contains SL�	K
�

Corollary ���
 Let G be group of �nite Morley rank which is isomorphic to SL�	K
 as an
abstract group with K an algebraically closed �eld� Suppose A is an in�nite de�nable unipotent
subgroup of G� Then for some conjugate B of A� hA�Bi � G�

Proof� Let A be as in the statement and B be a conjugate of A which does not normalize A�
Then H � hA�Bi is a de�nable connected subgroup of G by Fact ���� If H is solvable then H is
contained in a Borel subgroup of G� contradicting the choice of B� Thus Fact ���� applies and
H � G� �

��



Lemma ���� Let G be a group of �nite Morley rank which is isomorphic to SL�	K
 as an
abstract group with K an algebraically closed �eld of characteristic �� Let S o R be a Borel
subgroup with S a Sylow ��subgroup of G and R a maximal torus� Then the following hold�

��	 G is generated by S together with any involution i not in S�

��	 Let V be an elementary abelian ��group on which G acts faithfully so that 	G� V 
 has �nite
Morley rank� and set f � rkK� Then rkV 	 �f �

Proof�
Ad 	�
� This follows from Corollary ���� applied to hS� Sii�
Ad 	�
 Let V be as stated� We may assume that V is irreducible� If some nontrivial element

v 
 V satis�es rk 	CG	v

 � f then rkV 	 rk 	vG
 	 �f and we are done� So we assume toward
a contradiction that rk 	CG	v

 � f for all nontrivial v 
 V �

Fix v 
 CV 	S
� � As rk 	CG	v

 � f � we have CG�	v
 � S and thus CG�	v
 has the form
S o R� with R� a nontrivial torus� which is not necessarily algebraic� Let w be an involution
that inverts R� and set v� � v � vw � Note that v� � �� in fact� if w 
 CG	v
 then by Corollary
����� we have CG	v
 � G� But by assumption� the action of G on V is irreducible�

Now� hw�R�i � CG	v�
� As rk 	CG	v�

 � f � CG
�	v�
 has a nontrivial Sylow� ��subgroup

Q� which is normal in C�	v�
 and in particular is normalized by R� and by w� But there is no
such ��group Q in G since the only Sylow ��subgroups normalized by R� are S and Sw � �

Proposition ���� Let G be a group of �nite Morley rank which� as an abstract group� is iso�
morphic to SL�	K
 with K an algebraically closed �eld of characteristic �� Let A be an in�nite
de�nable ��subgroup of G� V a connected elementary abelian ��group which is a G�module such
that 	G� V 
 has �nite Morley rank� Suppose CV 	G
 � �� Then�

�� rk 	A
 � rk 	V�CV 	A



�� Equality holds only if A is a Sylow ��subgroup of G� and V is a natural G�module�

Proof� Let f � rkK� By Corollary ����� G � hA�Bi with B some conjugate of A� As CV 	G
 �
�� the natural map V �� �V�CV 	A
� �V�CV 	B
 is injective and thus rkV � �rk 	V�CV 	A

�
By Lemma ���� 	�
� rk 	V�CV 	A

 	 f 	 rkA� This proves the �rst point�

Now suppose rkA � rk 	V�CV 	A

� Then rkA � f and A is a Sylow ��subgroup of G�
Furthermore rk 	V�CV 	A

 � f so rkV � �f and by Lemma ���� rkV � �f �

It remains to be seen that in this case V is a natural module� For this we use Timmesfeld�s
result� Fact ����� As rkV � �f � V is irreducible and thus �V�G � V � The only point that needs
to be checked is the quadratic action� �V�A�A � � where A is a Sylow ��subgroup of G�

Let X �
S
fCV 	A

g
� � g 
 Gg� Then X is the union of pairwise disjoint sets of rank f
and hence rkX � �f � and X is generic in V � Thus a generic element of V is �xed by a Sylow
��subgroup of G�

We claim that every element v 
 CV 	A

� has CG

�	v
 � A� Supposing the contrary� we
proceed as in the proof of the previous lemma� We suppose v 
 CV 	A


� is centralized by a
nontrivial torus R and we take w inverting R� Consider v� � v � vw� Then as in the proof of
the previous lemma CG	v�
 must be a torus� In particular rkCG	v�
 � f and thus vG� is also
generic in V � But this contradicts the result of the previous paragraph�

Let T be a maximal torus in NG	A
� For v 
 C�V 	A

� as C�G	v
 � A� the orbit vT is

generic in C�V 	A
 and as C�V 	A
 is connected� C
�
V 	A


� is a single orbit under T � But if A� � A
is a conjugate of A normalized by T then V � CV 	A
 � CV 	A�
 as a T �module and thus
 V � � 	V�CV 	A

� is also a single orbit under T � Since C�V 	A
 � �� it follows that C�V 	A
 �  V �
or in other words �V�A � CV 	A
� and �V�A�A � �� �

The following corollary is an analog of a result given in ��� and ����

��



Corollary ���� �	�
�� ����� of 	���� Let G be a group of �nite Morley rank which is isomor�
phic to SL�	K
 with K an algebraically closed �eld of characteristic �� Let V be a faithful
F�G�module� Let S be a Sylow ��subgroup of G� Assume that T � S is de�nable and nontrivial�
and�

�i	 �V� T� T  � ��

�ii	 rk 	V�CV 	T 

 � rk 	T 
�

Then the following hold�

�a	 rk 	T 
 � rk 	V�CV 	T 

�

�b	 T � S�

�c	 V�CV �	G
 is a natural F��module for G�

�d	 CV 	S
 � �V� SCV 	G
�

Proof� Point 	d
 is a special case of 	c
� We have proved 	a � c
 under the assumption that
CV 	G
 � �� All that we need to prove now is that CV�CV ��G�	G
 � ��

Let V��CV
�	G
 � CV�CV ��G�	G
� Then �V�� G�G � � so by the Three Subgroups Lemma

�V�� G � �� as claimed� �

���� Balance and components

We remind the reader that for a group of �nite Morley rank G� F 	G
 stands for the Fitting
subgroup� the subgroup of G generated by all its normal nilpotent subgroups� It is de�nable
and nilpotent 	Theorem ��� of ���
�

Fact ���� Let H be a K�group of �nite Morley rank� Then CH�	F �	H

 � Z�	F �	H

�E�	H
�
In particular� if H is solvable then CH

�	F �	H

 � Z�	F �	H

�

Proof� Let K � CH
�	F �	H

� Then Z�	F �	H

 � Z�	K
� If �	K
�Z�	F �	H

 is in�nite�

then as the quotient has a de�nable characteristic abelian subgroup� K contains a characteristic
connected nilpotent group N properly containing Z�	F �	H

� Then N � 	F �	H
 � K
� �
Z�	F �	H

� a contradiction� So �	K
�Z�	F �	H

 is �nite�

In particular� as K is connected� �K��	K
 � Z	K
� Thus �K� �K��	K
 � 	�
 and by a
standard application of the three subgroups lemma� �K���� �	K
 � 	�
� By Fact ���� K �
K����	K
� and as K is connected this yields K � K�����	K
 � K���Z�	F �	H

� Let E �
K���� As �E� �	K
 � 	�
� we have �	E
 � Z	E
 and by Fact ����� E�Z	E
 is semisimple�
Hence E � E	K
 � E�	H
� Thus K � Z�	F �	H

 � E�	H
 and the reverse inclusion is
immediate� �

Fact ���� �	��� Let H be a connected solvable group of �nite Morley rank and S a Sylow ��
subgroup of H� Assume S is unipotent� Then S � F 	H
� and therefore S is a characteristic
subgroup of H�

The following result is known as the Thompson A �B�Lemma�

Fact ���� �	��� ���� �i�� Let G be a group of �nite Morley rank whose de�nable p�subgroups
are nilpotent�by��nite� and let A and P be de�nable p�subgroups of G with A normalizing P �

If B is a de�nable subgroup of G containing no element of order p� which normalizes P and
centralizes both A and CP 	A
� then B centralizes P �

The next result is referred to as the L�balance property�

��



Fact ���� Let H be a K�group of �nite Morley rank of even type� and U a ��subgroup of H�
Then E�	C	U 

 � E�	H
�

Proof� Let T be a torus contained in a component of E�	C	U 

� Let P be O�	H
� Now
CP 	U 
 � O�	C	U 

� so T commutes with CP 	U 
� By the Thompson A�B�lemma� with B � T �
T commutes with O�	H
� As such tori generate E�	C	U 

� E�	C	U 

 centralizes O�	H
� On
the other hand E�	C	U 

 also centralizes O	H
 since E�	C	U 

 is generated by unipotent ��
subgroups 	Corollary to Fact ����
� Thus E�	C	U 

 centralizes F �	H
 � O�

�	H
 � O	F 	H

�
But the connected component of the centralizer of F �	H
 in H is Z�	F �	H

 � E�	H
 	Fact
����
� so E�	C	U 

 � E�	H
� �

Fact ���� Let H be a connected K�group of �nite Morley rank� of even type� and let U be a
��subgroup of H� Then E�	C	U 

 �E	H
�

Proof� By Fact ���� Z	E	H

 is �nite� and E	H
 is a central product of quasisimple algebraic
groups� As H is connected� it acts by inner automorphisms on E	H
� Hence so does U �

By Fact ����� E�	C	U 

 � E	H
� so E�	C	U 

 � E	CE�H�
�	U 

� As U acts by inner

automorphisms�CE�H�	U 
 is the central product of CL	U 
 as L varies over the factors of E	H
�
and E�	C	U 

 is correspondingly the central product of the groups E�	CL	U 

�

For any factor L of E	H
� U acts on L as a ��subgroup  U of L� If this group is trivial then
E	CL	U 

 � L� and otherwise E	CL	U 

 � E	CL	  U 

 � �� this last result is a consequence of
the result of Borel and Tits on the relation between unipotent subgroups and parabolic subgroups
given above as Fact ����� as explained for example in ���� ���� or ���� x� � �

��



� Baumann�s Theorem� Pushing up� and C�G� T �

The following analog of a theorem of Stellmacher in the �nite case will be assumed in the present
section� A proof will be given in the appendix� following closely on the proof as given in ���
and using the information about SL�	K
 collected in the previous section�

Theorem ��� �	���� Let G be a group of �nite Morley rank of even type� Let M be a de�nable
connected subgroup of G such that M � M�O�	M 
 � SL�	K
 for some algebraically closed �eld
K of characteristic �� and F �	M 
 � O�	M 
� Assume that for S a Sylow ��subgroup of M �

	P 
 no nontrivial de�nable connected subgroup of S is normalized by both M and NG	S


Set Q � O�	M 
� L� � O�	M 
� V � �Q�L�� and D � CQ
�	L�
�

Then the following hold�

�� V is an elementary abelian ��group central in Q�

�� V�V � Z	M 
 is a natural F�	M 
�module�

�� Q � DV � a central product�

�� S���
�	Z	S

 is an elementary abelian ��group�


� Z�	Q
 is an elementary abelian ��subgroup�

Here O�	M 
 is the smallest de�nable normal subgroup H of M such that M�H is a ��group�
since  M � M�O�	M 
 is simple� this is the smallest de�nable normal subgroup of M covering
 M � and coincides with M ���� As in �nite group theory F �	G
 denotes the �generalized Fitting
subgroup� of a group G and for G of �nite Morley rank the de�nition follows that in �nite group
theory� F �	G
 � F 	G
E	G
�

��� The Baumann pushing up Theorem

In this subsection we obtain analogues in our context of results from ���

Theorem ��� Let G be a group of �nite Morley rank of even type� Let M be a de�nable
connected subgroup of G such that M � M�O�	M 
 �� SL�	K
 with K an algebraically closed
�eld of characteristic �� Assume that F �	M 
 � O�	M 
� If S is a Sylow ��subgroup of M then
the following hold�

�� S contains a nontrivial de�nable connected subgroup which is normalized by both M and
NG

�	S
�

�� If in addition

	P �
 no nontrivial de�nable subgroup of S is normalized by both M and NG	S


then there exists an automorphism � de�nable in G such that S � Z	O�	M 

�O�	M 
�

Proof� �� We use the notation of Theorem ��� as well as the structural information provided
there concerning the groups Q� V � and D� Note that when one assumes that S contains no
nontrivial de�nable connected subgroup which is normalized by both M and NG

�	S
� all the
assumptions of Theorem ��� including 	P
 are ful�lled 	G replaces G
� We will show eventually

that "V � hV NG
��S�i is normal in M � This will su!ce to prove � since it is obvious that N�

G	S


normalizes "V �
Note that Q is connected by Fact ����� thus S is connected� As L� covers  M and V � L� we

have S � Q	S �L�
 � D	S �L�
� As F
�	M 
 � Q and  M is simple� Z	S
 � Q� We note further

that Q � 	L�Z	S

 � 	Q � L�
Z	S
 � 	D � L�
V Z	S
 � V Z	S


��



We set W � V Z�	S
� As F �	M 
 � Q� we have W � Q� and by Theorem ��� 	�
 and 	�
�
W is an elementary abelian subgroup central in Q� Let f denote the rank of the �eld K over
which M�O�	M 
 is de�ned� Note that rk 	S�Q
 � f �

A few remarks on the structure of W are in order� We have W�Z�	S
 � V�V � Z�	S
�
By Theorem ��� 	�
 we have �S� V  � Z	S
 and then by Theorem ��� 	�
 we �nd V � Z	S
 �
�S� V 	V � Z	M 

� and rk 	W�W � Z	S

 � f � If i 
 W n Z	S
 then as Q � CS	i
 � S� we
have CS	i
 � Q by Theorem ��� 	�
� Expressed in terms of the co�rank� namely co�rk S CS	i
 �
rkS � rkCS	i
� this becomes co�rk S CS	i
 � f �

On the other hand� suppose i 
 S n Q is any involution with co�rk S CS	i
 � f � We will
show that i 
 	S � L�
Z	S
� As S � D	S � L�
 we may write i � i�i� for elements i� 
 D�
i� 
 	S � L�
� Now i� 
 	S � L�
 nQ� so co�rk V CV 	i�
 	 f because i� acts nontrivially on the
natural module V�V �Z	M 
� On the other hand i� commutes with V and hence CV 	i
 � CV 	i�
�
Thus co�rk V CV 	i
 � f �

We claim that CQ	i
 � CD	i
CV 	i
� Suppose d 
 D� v 
 V � and �dv� i � �� Then
�v� i � �d� i 
 D�V � C	L�
� Thus in view of the action of S on V � v 
 Z	S
� Thus v� d 
 C	i

and our claim is proved� As D � V � C	i
 we may work in  Q � Q�D � V � Then  Q�C	i
 �
 D�CD	i
 �  V �CV 	i
� As f 	 co�rk �QCQ	i
 � co�rk �DCD	i
 � co�rk �VCV 	i
 � co�rk �DCD	i
 � f �
we �nd D � C	i
� On the other hand i� commutes with D� so D � C	i�
� Thus i� commutes
with DV L� and hence i� 
 Z	S
� Thus i 
 	S � L�
Z	S
 as claimed�

Now suppose that � is any de�nable automorphism of S for which W� � Q� Then W�nQ �
	S � L�
Z

�	S
� and since W� n Q generates W�� also W� � 	S � L�
Z
�	S
� Furthermore we

claim that W� �Q � Z	S
 in this case� Let j 
 	W� �Q
� Then j 
 Q � 	L�Z	S

 � V Z	S
�
However looking again at the natural module� as j commutes with an involution inW��	S nQ
�
this forces j 
 Z	S
 as claimed�

Thus if W� � Q then W�Q�Q � W��W� �Q has rank f since Z�	S
 � W� � Q � Z	S
�
and hence S � W�Q�

Suppose now � is another automorphism of S for which W � � Q� Then S �W�Q � W �Q�
Take i 
 W� n Q� and choose j 
 W � representing the same nontrivial element of S�Q� Then
ij 
 Q � V D� Let ij � vd with v 
 V � d 
 D� Then 	vd
i � 	vd
�� � vd�� so viv 

V �D � Z	M 
 and i acts trivially on v in V�	V � Z	M 

� As  V � V�V � Z	M 
 is a natural
module� i 
 S nQ� and Z	S
 covers �i�  V � we �nd v 
 Z	S
 and hence ij � vd 
 C	i
� However
ij 
 Q � 	L�Z	S

 � V Z	S
 and CV Z�S�	i
 � Z	S
� so ij 
 Z	S
� and i 
 W �Z	S
� Thus

W� � 	W �Z	S

� � W � �
We claim now that for X any connected group of automorphisms of S which is interpretable

in G� we have W� � Q for � 
 X� Suppose this fails� Then there is a unique element W�

	� 
 X
 in the orbit of W under X such that �W�W� � �� namely the one for which W� � Q�
Evidently the same condition applies to W � for any � 
 X�

If � 
 X then there is a unique � 
 X such that �W��W � � ��

Let "W � hWX i� Then C	 "W 
 � C	hWX�i
 for some �nite X� � X� Then X�N 	W 
 �
X��N 	W 
� if � 
 X� and � is chosen so that �W��W � � �� then there is some �� 
 X�

so that �W��W ��  � � and as we have seen this forces W � � W �� � Accordingly X�NX 	W 
 is
�nite and as X is connected� X normalizes W � a contradiction�

In particular WNG
��S� � Q and thus "V � hV NG

��S�i � Q� Thus � "V � L� � �Q�L� � V and
L� normalizes "V � Furthermore S normalizes "V and as M � L�S� M normalizes "V � This proves
��

�� This is mostly a variation over the �nal argument of part �� The proof of � shows that
if � is an automorphism of S de�nable in G such that W� � Q� then S � W�Q� Therefore
it su!ces to argue that such a de�nable automorphism exists� If not then WNG�S� � Q and
thus "V � hV NG�S�i � Q� Thus � "V � L� � �Q�L� � V and L� normalizes "V � Furthermore S
normalizes "V and as M � L�S� M normalizes "V � But "V is de�nable by Fact ��� 	ii
� and as a
result the assumption 	P�
 is violated� �

��



Remark ��� The proof of the �rst part of the foregoing theorem also shows that starting with
the con�guration delivered by the Stellmacher theorem� we can �nd a normal subgroup of M
which is continuously characteristic in S relative to G� namely the group generated by all V ��
where � varies over all automorphisms of S belonging to any connected group of automorphisms
of S interpretable in G� However for this to be of any potential use one would also need to
strengthen the Stellmacher theorem correspondingly�

��� Pushing up to a parabolic subgroup

Theorem ��� �Pushing Up� Let G be a simple K��group of �nite Morley rank and of even
type� Q a unipotent ��subgroup of G such that Q � O�	N�	Q

� with B	N�	Q
�Q
 � SL�	K

for some algebraically closed �eld of characteristic �� Then N�	Q
 contains a Sylow� ��subgroup
of G�

Proof� By Fact ����� Q is connected� We may suppose that Q is nontrivial�
Let M � B	N�	Q

� Let S be a Sylow� ��subgroup of M � and extend S to T a Sylow�

��subgroup of G� It su!ces to show that N�
T 	S
 � S�

We make a case division according as the conclusion of Theorem ��� � does or does not hold
for M � namely�

	BT

There is a nontrivial connected de�nable subgroup
X of S which is normalized by M and by N�	S
�

Suppose �rst the condition 	BT 
 holds� and �x X � S accordingly� As M � N�	X
� by
Lemma ���� S is a Sylow� ��subgroup of N�	X
� As NT �	S
 � N�	X
� we have NT �	S
 � S�
as required�

Now we deal with the case in which condition 	BT 
 fails� We �rst consider the structure of
M � Then by Theorem ��� � M � F �	M 
 � L � Q� Furthermore Q is elementary abelian� as
otherwise we set X � �	S
 � �	Q
� and X is connected 	Fact ����
 and normalized by both M
and N 	S
� and is nontrivial�

In this situation� we claim that Q is a Sylow� ��subgroup of C	L
� Let U be a Sylow� ��
subgroup of C	L
 containing Q� Then NU�	Q
 �M � LQ and NU�	Q
�L � � so NU�	Q
 � Q
and by the normalizer condition Q � U �

Our �nal goal is to show that L is a standard component in G� then Fact ���� shows that S
is a Sylow� ��subgroup of G� As U � C	L
� C	L
 certainly contains involutions�

Let i be an involution in C	L
� We must show that L is a component of C�	i
� Suppose �rst
that i 
 Q� Then S � C�	i
 and S is a Sylow� ��subgroup of C�	i
 by Fact ����� Thus by Fact
���� L is a component of C�	i
�

Now let i be any involution in C	L
� As Q is a Sylow� ��subgroup of C	L
� we may assume
that i normalizes Q� In particular� CQ�	i
 � �� Let j be an involution in CQ

�	i
� Then L is a
component of C�	j
 and hence of CC��i�

�	j
� By Fact ����� L is a component of C�	i
� �

��� The C�G�T 	 Theorem

In this subsection we prove a �global� C	G� T 
 theorem in the context of simple K��groups of
even type� In �nite group theory the �local� C	G� T 
 theorem was proven by Aschbacher in
��� �� Later Gorenstein and Lyons gave a proof for K�groups in ���� ��� 	pages �����
 contains
an outline of �TheoremM	S
� which is a �variation of the global C	G� T 
 theorem� whose proof
will be given in later volumes of the same series on the revision of the classi�cation of the �nite
simple groups�

We refer to Subsection ��� for the precise de�nition of C	G� T 
 as used here� and a comparison
with related notions�

Theorem ��� �C�G�T�� Let G be a simple K��group of �nite Morley rank of even type with
T a Sylow� ��subgroup� If C	G� T 
 � G then G � SL�	K
 for some algebraically closed �eld K
of characteristic ��

��



Proof� With G �xed� we de�ne M 	T 
 � C	G� T 
� With ��	G
 as in the statement of Corollary
����� we will prove�

	�
 M 	S
 � M 	T 
 when 	S� T 
 is an edge in ��	G
�

From this it follows that the graph ��	G
 is disconnected� as otherwise C	G� T 
 would be
independent of the choice of T and hence normal in G� Then Corollary ���� applies and the
theorem follows� Thus it su!ces to verify 	�
�

Suppose toward a contradiction that 	�
 fails� and take a counterexample 	S� T 
 with rk 	S�T 

maximal� Let Q � 	S �T 
� and H � N�	Q
� Certainly Q is a proper subgroup of S and T � We
will show in due course that Theorem ��� applies to H�

We claim that there is a Sylow� ��subgroup S� of G such that M 	S
 � M 	S�
� S� � H 	
	S � H
�� and S� � H contains a Sylow� ��subgroup of H� Indeed� let S� be any Sylow� ��
subgroup of G which contains a Sylow� ��subgroup of H containing 	S�H
�� Then rk 	S�S�
 	
rk 	S �H
 � rkQ since NS

�	Q
 � Q� Hence M 	S
 � M 	S�
� as claimed� since otherwise the
choice of the pair 	S� T 
 is contradicted�

Similarly we may take T� a Sylow� ��subgroup of G such that M 	T�
 �M 	T 
 and 	T��H
�

is a Sylow� ��subgroup of H containing 	T � H
�� As 	S � T 
� � 	S � H
� � 	T � H
��
	S � T 
� � S� � T�� Thus M 	S�
 � M 	T�
 and rk 	S� � T�
 	 rk 	S � T 
� so S and T may be
replaced by S� and T�� which means that we may now suppose that S �H and T �H contain
Sylow� ��subgroups of H�

With this choice of S and T � we have O�
�	H
 � 	S � T 
� � Q� so O�

�	H
 � Q� and by Fact
�����

O�	H
 � Q

Let  H � H�Q� It is easy to see that ��	  H
 is disconnected� and speci�cally that u � 	S �H
�

and v � 	T �H
� lie in di�erent components� Indeed if 	Qi
 is a sequence of Sylow� ��subgroups
of H such that  Qi links u to v in ��	  H
� then the meaning of this in H is that the Qi are Sylow

�

��subgroups of H such that the rank of any consecutive intersection Qi � Qi�� is greater than
rk 	S � T 
� If therefore Qi is extended to a Sylow� ��subgroup Ri of H� then by the choice of
the counterexample 	S� T 
 we �nd M 	Ri
 � M 	Ri��
 along the path� Thus M 	S
 � M 	T 
� a
contradiction�

Since  H is a K�group and ��	  H
 is disconnected� by Corollary ���� we have�

B	  H
 � SL�	K
 with K algebraically closed of characteristic ��

Thus Theorem ��� applies to H� and H contains a Sylow� ��subgroup of G� But we also
arranged to have S� T meet H in Sylow� ��subgroups of H� so now we have S� T � H�

As in the proof of Theorem ���� we must again consider whether the conclusion of Theorem
��� � applies to B	H
� or not� If it does� then S has a nontrivial de�nable connected subgroup
X which is normalized by N�	S
 and by B	H
� so in particular by T � Hence T � M 	S
� But
then S and T are conjugate in M 	S
� say by g� This gives M 	T 
 � M 	Sg
 � M 	S
g � M 	S
�
a contradiction to the choice of S and T �

If on the other hand the conclusion of Theorem ��� � does not apply to H� then as before
we �nd that B	H
 � Q � L with L � SL�	K
� K algebraically closed of characteristic �� and
Q elementary abelian� In particular the Sylow� ��subgroups of H are elementary abelian� As
H contains a Sylow� ��subgroup of G� the same applies to G� so Fact ���� applies to G and
G � SL�	K
 with K algebraically closed of characteristic �� as required� �

��



Appendix� Stellmacher�s Theorem

In this section we carry over the results in ��� to the context of groups of �nite Morley rank
of even type� following closely the notation and the arguments of ���� There are some deviations
from the arguments as given there� on the one hand the representation theory of SL�	K
 over
the �eld of � elements now involves in�nite dimensional representations� and in particular ranks
are used rather than dimensions to compare sizes� in addition rather than passing to a free
product with amalgamation 	or in graph theoretical terms� a tree
 we remain in the context of
an ambient group of �nite Morley rank� The latter point avoids issues of de�nability�

An important deviation is in the statement of the theorem itself� Our condition 	P
 is weaker
than the most natural analog of Stellmacher�s condition� and it is essential for applications that
the proof goes through with this assumption�

The entire section will be devoted to the proof of the following theorem� parallel to the main
result of ��� in the �nite case�

Theorem ���
Let G be a group of �nite Morley rank of even type� Let M be a de�nable connected subgroup

of G such that M � M�O�	M 
 � SL�	K
 for some algebraically closed �eld K of characteristic
�� and F �	M 
 � O�	M 
� Assume that for S a Sylow ��subgroup of M �

	P 
 no nontrivial de�nable connected subgroup of S is normalized by both M and NG	S


Set Q � O�	M 
� L� � O�	M 
� V � �Q�L�� and D � CQ
�	L�
�

Then the following hold�

�� V is an elementary abelian ��group central in Q�

�� V�V � Z	M 
 is a natural F�	M 
�module�

�� Q � DV �

�� S���
�	Z	S

 is an elementary abelian ��group�


� Z�	Q
 is an elementary abelian ��subgroup�

The �nite version of this theorem is proven in ��� using the amalgam method� We adapt
this to our present context� Fix M � S� G as in the statement of the theorem� By Fact ���� S is
a connected group� We let H � NG	S
 and G � hM�Hi� By Corollary ��� G is de�nable in G�
and we may replace G by G� Set B � M �H� Note that B is a Borel subgroup of M �

A The associated graph

We will consider the bipartite coset graph � of G corresponding to the pair of subgroups M and
H� The two types of vertices will be the cosets of M and H in G� In particular we will refer
to a coset of M as a vertex of type M � The edges are the cosets of B in G� An edge Bx has
as its vertices the cosets Mx and Hx� The natural action of G on � is de�nable� The following
properties given in ��� apply here�

Lemma A�� ����� 	���� �a	 � is connected and bipartite�

�b	 G is edge but not vertex transitive on ��

�c	 The vertex stabilizers in G are conjugate to M or H�

�d	 The edge stabilizers in G are conjugate to M �H � B�

�e	 For � 
 �� the vertex�stabilizer G� is transitive on the set of vertices adjacent to ��

��



Lemma A�� ����� 	���� No nontrivial de�nable connected subgroup of G is normal in the sta�
bilizer of two adjacent vertices� The kernel of the action of G on � is a �nite subgroup of
O�	Z	G

�

Proof� If K is a de�nable subgroup of G which is normal in the stabilizers of two adjacent
vertices� then by edge transitivity we may suppose that these vertices are M and H� Then
K �M and K � B� so K � O�	M 
 and condition 	P 
 applies� Hence K cannot be nontrivial
and connected�

In particular if K is the kernel of the action of G on � then K � O�	M 
 and K� � �� As G
is connected� K � Z	G
 as well� �

Since we prefer to work with a faithful action� we will factor out the kernel of the action of
G on �� which will not a�ect our hypotheses� 	We will also have to check the validity of our
conclusions in the original context� at some point�
 Thus we will generally suppose�

	#
 G acts faithfully on �

B The module Z�

Notation B�� Let �� �� be vertices of ��

�� d	�� ��
 will denote their distance in ��

�� G���
� is the intersection of the groups G� for which d	�� �
 � ��

�� Q� � O�	G�


�� Z� � h��
�	Z	T 

 � T 
 Syl�	G�
i�


� b� � minfd	�� �
 � � 
 �� Z� � G
���
� g� Let b � b� with 	 of type M �

�� 	�� ��
 is a critical pair for � if � is of type M � d	�� ��
 � b and Z� � G
���
�� �

Remark B�� �� Q� and Z� are of interest only when � is of type M  otherwise� Q� is the
unique Sylow ��subgroup of G�� and Z� is ��

�	Z	Q�

�

�� For � of type M � Z� is the critical object of study� We will see momentarily that this is an
elementary abelian ��group which a�ords a nontrivial representation of G��Q� � SL�	K
�
which will essentially be the natural representation�

�� The parameter b� is well�de�ned ��nite	 since Z� is nontrivial� � is connected� and the
action of G on � is faithful� Furthermore b� evidently depends only on the type of �� so
b is also well�de�ned� Large values of b lead quickly to implausible �and contradictory	
con�gurations our main concern will be with the possibilities b � � and b � ��

�� The de�nition of a critical pair implies that Z� � G�� �

Lemma B�� ����� ���� 	���� Let � 
 � be of type M � Then�

�� Q� � O�	G
���
� 
 is a Sylow ��subgroup of G

���
� �

�� For T a Sylow ��subgroup of G�� Z� � ��
�	Z	T 

�

�� Z� � ��
�	Z	Q�

 and CG�	Z�
 � Q��

�� b 	 � is even�

In particular� G��Q� acts on Z�� and the action is nontrivial�

��



Proof� Ad �� We may suppose that � � M � For S a Sylow ��subgroup of M � the vertex

� � N�	S
 is a neighbor of � and hence G���
� � N�	S
� Hence a Sylow ��subgroup of G���

� is
contained in O�	M 
 � Q�� On the other hand M acts transitively on its neighbors� by edge

transitivity� so they are of the form N�	S
 with S a Sylow ��subgroup of M � Thus Q� � G
���
�

is a Sylow ��subgroup of G
���
� �

Ad �� If Z� � ��
�	Z	T 

 we contradict Lemma A���

Ad �� Again we suppose � � M � Let S be a Sylow ��subgroup of M � Then Z�	S
 �
CM

�	Q�
 � Q� as F �	M 
 � O�	M 
� so Z�	S
 � Z	Q�
� Hence Z� � ��
�	Z	Q�

 and

CG�	Z�
 	 Q�� But G��Q� is simple so by point 	�
� CG�	Z�
 � Q��

Ad �� As Z� � Q� � G
���
� we have b 	 �� It su!ces now to check that b is even� or in other

words� taking 	�� ��
 to be a critical pair� we claim that �� is of type M � If this is not the case

then O�	G��
� which is the Sylow ��subgroup of G�� � is contained in G
���
�� � Since Z� � G�� by

the de�nition of a critical pair 	Remark B�� �
� we have Z� � O�	G�� � G
���
�� � a contradiction�

�

Lemma B�� ����� 	���� Let 	�� ��
 be a critical pair� Then�

�� � � �Z�� Z��  � Z� � Z�� �

�� �Z�� Z�� � Z�� � � � �Z�� � Z�� Z��

�� 	��� �
 is a critical pair�

Proof� By the minimality of b we have Z� � G�� and thus Z� normalizes Z�� � As this is a
critical pair however� Z� � Q�� and thus �Z�� Z�� � � 	Lemma B�� Ad� �� Ad� �
� In particular
Z�� � Q� and thus the pair 	��� �
 is also critical� So 	�� �
 both follow� Lemma B�� and 	�

imply 	�
� �

Lemma B�� ����� 	���� Let 	�� ��
 be a critical pair for � and set G� � G��Q�� Then�

�� Z��Z� � Z	G�
 is a natural SL��module for G��

�� Z��Q� is a Sylow ��subgroup of G��

�� Setting S � Z��Q�� ��
�	Z	S

 � �Z�� Z�� 	Z� � Z	G�

�

Proof� As both 	�� ��
� and 	��� �
 are critical pairs� we will �rst suppose that for the pair
under consideration we have�

rk 	Z���Z�� �Q�
 	 rk 	Z��Z� �Q��


We may also assume G� �M �
We apply Corollary ���� to  G� and its subgroup T �  Z�� � acting on the module V � Z��

With this notation� the hypotheses of the corollary are that Z� is a faithful module 	Lemma
B��
� that �Z�� Z�� � Z��  � � 	Lemma B��
� and that�

rk 	Z��CZ�	  Z�� 

 � rk 	  Z�� 


which decodes to the condition assumed at the outset�
Corollary ���� then yields the following four conditions�

�� rk 	  Z��
 � rk 	Z��CZ�	  Z��

� and thus our results apply equally to 	�� ��
 or 	��� �
�

��  Z�� is a Sylow ��subgroup of  G�� which was our second point�

�� Z��CZ�	
 G�
 is indeed a natural module�

�� CZ�	Z��
 � �Z�� Z�� CZ�	G�
� this is our �nal claim� taking into account� C�Z�	Z��
 �
��

�	Z	Z��Q�

�

�

��



C The case b � �

We know that b 	 � is even� In this section we show that the case b � � leads to the con�guration
described in the theorem� Subsequently we will show that the case b � � leads to a contradiction�

Recall that at an early stage we modi�ed G to ensure that the action on � is faithful� and
that we are presently engaged in verifying the theorem in that case� Since the present case does
not lead to a contradiction� but rather to conclusions about the structure of G� it will also be
necessary to argue that these conclusions pass over to the general case�

We recall the notation involved in analyzing the structure of M �

Q � O�	M 
 L� � O�	M 

V � �Q�L� D � CQ

�	L�


The following lemma will be useful in this subsection as well as in the following�

Lemma C�� If �� � are vertices of type M in � with d	�� �
 � �� then G� � G� contains a
unique Sylow ��subgroup of G� and G��

Proof� There is a vertex 
 of the form N�	T 
 adjacent to both � and �� with T a Sylow ��
subgroup of G� and G�� If the intersection contained another Sylow ��subgroup of G� then by
Lemma ���� the two together would generate G�� �

Proposition C�� ����� 	���� Assume that b � � and that the action of G on � is faithful�
Then the following hold�

�� Q � DV � and V is an elementary abelian ��group central in Q�

�� For S a Sylow ��subgroup of M � S���
�	Z	S

 is an elementary abelian group�

�� Z� � Z�	Q�
� In particular� Z�	Q
 is an elementary abelian group�

Proof� Let 	�� ��
 be a critical pair for � with � � M � Then the subgroups Q�L�� D� V lie in
G� and in particular Q � Q��

As b � �� Lemma C�� implies that G� �G�� contains a unique Sylow ��subgroup S of G��

	�
 S � Z�Q��

By Lemma B�� Z�Q�� is a Sylow ��subgroup of G��� Since it is contained in G� as well� it
coincides with S� The same applies to Z��Q��

	�
 Q� � Z�	Q� �Q��


Z� � Q� � S � Z�Q�� � Thus 	�
 holds�

Now we introduce some additional notation� We �x g 
 G� so that G� � hZ�� � Z
g
��iQ��

which is possible since Z�� covers a Sylow ��subgroup of G��Q� � SL�	K
� Set F � hZ�� � Z
g
��i�

	�
 Z� � �S� Z��S
g � Z�Z	G�


We work in the natural module  Z� � Z��CZ�	G�
� Then �S�  Z� is a ��dimensional subspace
of  Z�� as is �Sg �  Z�� On the other hand �S� Z� � �Z�� � Z� � Z�� � Z� � CZ�	Z��
� so
�S�  Z� � C �Z�	Z�� 
 and �S�  Z� � �S�  Z�� � C �Z�	F 
 � C �Z�	G�
 � ��

Thus  Z� � �S�  Z�� �Sg � Z� and 	�
 follows�

	�
 Q� � Z�	Q� �Q�� �Q
g
��


By 	�
 �S� Z� � Q�� and �Sg� Z� � Qg�� � so by 	�
 Z� � 	Z� � Q� � Q��
Q
g
�� � Now

Q��Q�� � Sg � Z�Q
g
�� � 	Z��Q��Q��
Q

g
�� so Q��Q�� � 	Z��Q��Q��
	Q��Q���Q

g
��
 �

Z�	Q� �Q�� �Q
g
��
� and this combines with 	�
 to give 	�
�

��



	�
 Q� � CQ�
�	F 
Z�

Evidently Q� �Q�� �Q
g
�� � CQ�	F 
 and thus 	�
 follows from 	�
�

	�
 FZ� � G�

We have G� � FQ�� Now �Q�� FZ� � �CQ�	F 
Z�� FZ� � Z�� and �F� FZ� � FZ�� so
�G�� FZ� � FZ��

	�
 Z� � F � in particular F � G� and L� � F �

By 	�
 Z� � �Z��� Z��Z
g
��� Z�CZ�	G�
 � �F�Z���

�	Z	G�

� Consider the factors� We
have ��

�	Z	G�

 � Z�� � F � Also �Z�� � Z� � Z�� � F and �Zg�� � Z� � Zg�� � F � Thus
�F�Z� � F �

Thus Z� � F and F � FZ� � G�� As G� � FQ�� the quotient G��F is a ��group and
L� � F �

	�
 Q� � DV

We apply 	�
� C�Q�	F 
 � D by 	�
� As Z��CZ�	G�
 � �G��Q�� Z��CZ�	G�
� we have
Z� � �L�� Z�CZ�	G�
 � V D� Thus 	�
 follows�

	�
 �	S
 � D��	Z	S

�

As �Z�� Z��  centralizes Q� and Z�� � and S � Z��Q�� we �nd �Z�� Z��  � ��	Z	S

� Now
S � Z��Q� � Z��DV � As V � �Q�� L� � �Q�� F  � �Z�� F  � Z�� we �nd S � DZ�Z�� �

Let "S � S�D��	Z	S

� Then "S � h "Z�� "Z��i� Furthermore �Z�� Z�� � ��	Z	S

 and thus
� "Z�� "Z��  � �� Hence "S is elementary abelian and 	�
 follows�

	��
 S���
�	Z	S

 is elementary abelian�

The groups ��	S
� S and ��	�	S

 are contained in D by 	�
� and are normal in S Hence
they are normalized by L�S � G�� But as they are characteristic in S� they are normal in N�	S

as well� As these groups are also connected� by our basic assumption 	P 
� this forces them to
be trivial� Thus �	S
 � ��	Z	S

� and as �	S
 is connected� 	��
 follows�

	��
 Z�	S
 is elementary abelian�

�
�	Z�	S

 is connected� de�nable� and characteristic in S� and is contained in CZ�Q��	F 


which is contained in D� Thus ��	Z�	S

 is normalized by L�S � G� and by N�	S
� which by
our main assumption 	P 
 implies 	��
�

	��
 Z� � Z�	Q�
�

By Lemma B��	�
� Z� � Z	Q�
� As Q� � CQ�	F 
Z�� we have Z	Q�
 � CZ�Q��	F 
Z�� We
have CZ�Q��	F 
 � Z	S
 so Z�	Q�
 � Z�	S
Z� � Z� by 	��
�

This proves all parts of the theorem� �

Corollary C�� Assume that b � �� Then the following hold�

�� Q � DV � and V is an elementary abelian ��group central in Q�

�� For S a Sylow ��subgroup of M � S���
�	Z	S

 is an elementary abelian group�

�� Z� � Z�	Q
� In particular� Z�	Q
 is an elementary abelian group�

��



Proof� This is the same statement as the previous without the proviso that G act faithfully on
�� So let K be the kernel of the action of G on �� a �nite central ��group� and let G��M�� S�
be the quotients of G�M� S by K� Set�

Q� � O�	M�
 L� � O�	M�

V� � �Q�� L� D� � CQ�

�	L�


By the previous proposition our three claims hold for these groups� Note that Q� � Q�K
and L� � L�K�K� Thus V� � V K�K� We will check also that D� � DK�K� Certainly
DK�K � D�� Conversely� let "D be the preimage of D� in G� Then � "D�L� � K so by Fact ���
� "D�L� � � and "D� � D� As "D� covers D� "D � "D�K � DK�

Ad �� From Q� � D�V� it follows that Q � DV K� Since Q is connected we conclude that
Q � DV �

Ad �� Let S� be the preimage of ���	S�
 in S� Then �S� S� � K� As S is connected and
K is �nite� by Fact ��� we �nd S� � Z	S
� Further S��K is elementary abelian and �	S��
 is
connected� so S�� is elementary abelian� Thus S�� � ��	Z	S

� Now �	S
 � S� and �	S
 is
connected so �	S
 � S�

� � ��
�	Z	S

�

Ad �� Let Z�� be Z� computed in G�� It su!ces to check that Z� covers Z�� and that Z�	Q

covers Z�	Q�
� Let A be the preimage in G of Z�	Q�
� Then �A�Q � K� As Q is connected�
A � Z	Q
� Thus Z�	Q
 covers Z�	Q�
� The argument for Z� is similar� �

D The case b � �

In this �nal section we eliminate the case b � �� As b is even� we have b 	 �� The case b 	 �
leads more quickly to a contradiction� while the case b � � takes a closer analysis�

Notation D�� Let 	�� ��
 be a critical pair in �� A path of length b from � to �� is �xed� and its
vertices are denoted by 	�� ���� � � � � ��b
 or� counting from the other end� 	���b� � � � � ����� ��
�

In the next Lemma we discuss the prolongation of a path linking a critical pair �to the left�
in a natural way�

Lemma D�� ����� 	���� Let 	�� ��
 be a critical pair in �� Then there is a vertex � such that
d	�� �
 � � and�

�a	 Z� � G���

With such a choice of � we have�

�b	 hO�	G� �G�
� Z��i � G��

�c	 	�� �� � �
 is a critical pair�

�d	 If b � � then �Z�� Z���� � Z	G�
�

Proof� Suppose �rst that � has been chosen satisfying 	a
 with d	�� �
 � �� Note that d	�� ��
 �
b � � as a consequence of condition 	a
� Let � be adjacent to �� �� and let S � O�	G�
 �
O�	G� � G�
 by Lemma C��� As � � � � �� S is distinct from O�	G���
 � Z��Q�� Thus
hS� Z��i covers G��Q� and hence hS� Z��i � G�� This is condition 	b
� For 	c
� note that

d	�� �� � �
 � b while Z� � G
���
���� as otherwise we would �nd Z� � O�	G����
 � G��� Thus

	�� �� � �
 is a critical pair� Thus 	b
 and 	c
 both hold�
If b � � then �Z����� Z�� � �� As 	�� ����
 is a critical pair �Z�� Z���� � Z�����Z�� Thus

the group �Z�� Z���� is centralized by Z�� and also by S as S � Z����Q�� Now 	b
 implies 	d
�
Accordingly we turn our attention to condition 	a
� Let � � �� � be any other neighbor of

�� Then as seen above� while checking 	b
� we have hO�	G�
� Z��i � G�� We will �nd � adjacent
to � so that Z� � G�� � Then as � � �� we have d	�� �
 � ��

��



Suppose toward a contradiction that Z� � G�� for every neighbor � of �� so that in fact
Z� � G�� � G���� for each such �� Let T � O�	G�� � G����
 � O�	G����
 � Z�Q�� and set
V� � hZ� � d	�� �
 � �i� Then our hypothesis amounts to� V� � T � As T � Z�Q�� this yields
Thus �V�� Z��  � �Z�� Z��  � Z� � V�� and hence V� is normalized by Z�� �

As V� is normal in G� and hO�	G�
� Z��i � G�� we �nd that V� is normalized by G� as well�
This contradicts Lemma A�� �

As a matter of notation� when we apply the foregoing lemma� we will call the vertex � which
is selected ��� ��� Formally� this has no special meaning� but it serves as an aide�m�emoire�

Proposition D�� ����� 	���� b � ��

Proof� Suppose towards a contradiction that b 	 �� Fix a vertex � � � � � as a�orded by
LemmaD��� and let a common neighbor of � and ��� be called ���� We consider the following
groups�

V� � hZG����iZ� V��� � hZG���

� iZ���

Then V� � G� and V��� � G���� As b � � we have V� � Q� and V��� � Q����

	�
 �Q�� V� � Z	G�
�

It su!ces to check that �Q�� Z��� � Z	G�
� As Z����Q��� is a Sylow ��subgroup of G�� we
have �Q�� Z��� � �Z����Q���� Z��� � �Z����� Z��� and condition 	d
 of Lemma D�� applies�

The idea now is to �re�ect� the �path� 	���� � � � � ��
 around ��� and to consider the view
from within the resulting long �path��

As 	���� ����
 is a critical path� Z���� covers a Sylow ��subgroup of G����Q��� and thus
we may choose an element t 
 G��� such that G��� � hZ����� Zt����iQ���� We consider the
sequence of vertices 		��� �
t� 	��� �
t� � � � � �t� �� �� �� � � � � ��� �
 in which �� � is the central
point� and only the even terms� as indicated� play any real role�

	�
 V� � G������t�

We check �rst that V� � G������t� For g 
 G� we have d	�� 	�� �
g
 � � and d	�� �� 	���
�
t
 � d	�� �� ��� �
 � b� � and thus d		�� �
g� 	��� �
t
 � b� Thus Z�����g � G������t and
V� � G������t �

Now suppose toward a contradiction that V� � G������t � Then V� � Q������t� Thus we
may �x i� i � � or �� so that V� � G����i�t while V� � Q����i�t � The two possibilities can be
analyzed to some extent simultaneously�

We �x � 
 	� � �
G� � f�g such that Z� � Q����i�t � and we take � � � if possible� Set
R � �Z�� Z����i�t�

As Z� � G����i�t � we have R � Z����i�t� As d		�� � i
t� 	�� � �
t
 � � � b we have
�R�Z������t � �Z����i�t � Z������t � �� Thus R centralizes Z������t�

Now d		�� � i
t� �
 � 	b � i
 � � � b so Z����i�t � G� and thus Z����i�t � O�	G���
� In
particular R � O�	G���
�

We now consider two cases separately�

	Case �
 Z����i�t � Q��

Then R � �Z�� Z����i�t � �V�� Q� � Z	G�
 by 	�
� By the choice of t� G��� � hG��� �
G�� Z������ti and thus R � Z	G���
 as well� As � 
 	�� �
G� � f�g� we have R � Z	G�
�

On the other hand we have Z����i�t � Q� � G� acting nontrivially on Z� � As  Z� �
Z��CZ� 	G�
 is a natural module for  G� � G��Q�� the commutator R is nontrivial in  Z� � and
thus R � Z	G�
� a contradiction�

Now suppose�
	Case �
 Z����i�t � Q��

��



As d		��� i
t� �
 � 	b� i
� � we conclude that i � � and that 	�� 	��� i
t
 is a critical pair�
Hence � � ��

Now R � �Z�� Z����i�t � �V���� Q��� � Z	G���
 by 	�
�
We have G� � hO�	G���
� Z��i and hence G�t � hO�	G���
t� Z����ti But R centralizes

G���� hence O�	G���

t� and d		����
t� ��t
 � � � b� so R � Z������t � Q��t and �R�Z��t  � ��

Thus R centralizes G�t and as t centralizes R� we have R � Z	G�
 as well� But  Z� �
Z��CZ�	G�
 is a natural module for G��Q�� and  R � �  Z�� Z����i�t  with Z����i�t acting non�
trivially� a contradiction�

	�
 V�� Z���Z�� and Q� �Q��� are normal in G����

Z���Q������t is a Sylow ��subgroup of G������t as 	�� �� �� � �
 is a critical pair� but this
is a subgroup of V�Q������t which is a ��group by point 	�
� Hence V� � Z���Q������t �

G��� is generated by G��� �G� and Z������t�
Now G� normalizes V� and �V�� Z������t � �Z���Q������t� Z������t � Z��� � V�� Thus V�

is normal in G����
Again� G��� � G� normalizes Z���Z� and by the calculation of the previous paragraph

�Z������t � Z�Z��� � �Z������t � V� � Z��� so Z������t also normalizes Z���Z�� Thus Z���Z�
is normal in G����

Finally� Q��� �Q� � CG���
	Z�Z���
�

	�
 Q� �Q��� � G��

Let X be the normal closure of Q��� � Q� in G�� Then X � Q� and our claim is that
X � Q����

Let Y � �V�� Q� �Q���� By 	�
 Y is central in G� and thus Y � �V�� X as well�
Since Y is central in G� it centralizes a Sylow ��subgroup of G���� But Y is normal in

G��� by 	�
� so Y is central in G���� Thus �Z���� X � �V�� X � Z	G���
� As  Z�	� �
Z����CZ���

	G���
 is a natural module and �  Z���� X � �� we �nd X � Q��� as claimed�

The �nal contradiction is derived as follows� As � � � is conjugate under G� to � � ��
	� � �
 is conjugate under G� to a neighbor � of � � �� Suppose � � 	� � �
g with g 
 G��
As d	�� �� � �
 � b� we have Z���� � Q� � Q� � 	Q� � Q���
g � Q� � Q��� by 	�
� Then
�Z����� Z��� � �� while 	�� �� �� � �
 is a critical pair� a contradiction� �

Proposition D�� ����� 	���� b � ��

Proof� Suppose toward a contradiction that b � �� Fix a critical pair 	�� ��
� Choose � � ��
and then �� �� in accordance with Lemma D�� so that d	�� �� �
 � d	� � �� �� �
 � � and
	�� �� �
 and 	�� �� �� �
 are critical pairs�

	�
 Z� � 	Z� � Z���
�Z�� Z���

This re�ects the fact that the module  Z� � Z��CZ�	G�
 is a natural module� Z��� covers
a Sylow ��subgroup of G��Q� so �Z����  Z� is a ��dimensional subspace of this module� and
similarly �Z�� �  Z� is a ��dimensional subspace� As Z�� and Z��� generate G� modulo Q�� by
Lemma D��	b
� we �nd  Z� � �Z����  Z�� �Z�� �  Z��

As �Z�� � Z� � Z�� �Z� centralizes Z��Q� � O�	G���
� we have �Z�� � Z� � Z� �Z��� and
	�
 follows�

We introduce the following additional notation�

U � Z�Z���Z���� $D � Q��� �Q��� �Q� �Q��� �Q��

We observe that U is a subgroup with U � � �Z���� Z��� � �� as Z� centralizes all three factors
and �Z���� Z��� � Z��� � Z���� since b � ��

��



	�
 Q� � $D � U �

This is similar to the proof of point 	�
 in Proposition C��� As Z��� � Q� � O�	G���
 �
Z���Q��� we �nd Q� � Z���	Q��Q���
� Similarlyusing successively Q��Q��� � O�	G��

 �
Z�Q�� and Q��Q����Q�� � O�	G���
 � Z���Q��� we �ndQ� � U �	Q����Q��Q����Q��
�

For the �nal step� Q��� � Q� � Q��� � Q�� � O�	G��

 � Z�Q��� � 	Z� � Z���
Q����
using 	�
� and as Z��Z��� � Q����Q��Q����Q��� we �nd Q� � U � $D� and the two factors
evidently commute�

	�
 UZ	G�
� G��

Set
F � hZ���� Z��i

By Lemma D��	b
� G� � FQ�� By 	�
 �U�Q� � U so it remains to be seen that �F�U  �
UZ	G�
�

Let U� � U �U�F � Then U� � U 	U� � $D
� Now U� centralizes $D and $D centralizes F and
U � so U� � $D � Z	G�
� and 	�
 holds�

	�
  U � UZ�	G�
�Z�Z�	G�
 is a nontrivial G��Q��module�

Point 	�
 implies that G��Q� acts on  U � It remains to show that this action is nontrivial�
If 	���
g � ��� we will show that g acts nontrivially� Let � � 	���
g � Then d	�� ���
 � �

and hence �Z�� Z��� � �� As �Z���� Z��� � � it follows easily that the action of g on  U is
nontrivial�

	�
 Z�� acts quadratically on  U �

 U �  Z���  Z��� where the bar refers to factoring out Z�Z
�	G�
� As Z�� centralizes Z��� it

su!ces to consider the action on  Z����
Now �Z���� Z��  � Q���� As Q��� � O�	G����
 � Z�Q�� � we have �Q���� Z��  � �Z�� Z��  �

Z�� Thus �Z���� Z��� Z��  � Z� and 	�
 follows�

	�
  U is a natural module for F�CF 	  U 
�

Here F � hZ���� Z��i as in 	�
� As Q� acts trivially on  U and FQ� � G�� F�CF 	  U 
 �
G��Q� is of type SL��

We apply Corollary ���� with G � F�CF 	  U 
 and T � Z�� � In view of point 	�
� we need
only check that rk 	  U�C�U	Z��

 � rkZ�� � which is clear� to conclude that  U�C�U	F 
 is a natural
module� But rk  U � �f where f is the rank of the base �eld� so  U must itself be a natural
module�

	�
 Z�	G�
 � Z��

We know Z�	G�
 � Q�� We need to show that Z�	G�
 is elementary abelian� Let S �
O�	G���
 � Z��Q�� It su!ces to show that Z�	S
 is elementary abelian�

Z	S
 � Q� and U � $D � Z	G�
 so Z	S
 � �Z	S
 � U  � �Z	S
 � $D� By 	�
 rk 	  U 
 �
rk 	  Z���
 � rk 	  Z���
� so �U � Z	G�


� � Z�� Hence �	Z�	S

 � Z	 $D
 � Z	G�
� Our original
hypothesis 	P 
 forces �	Z�	S

 � � and 	�
 follows�

After these preparations we reach a contradiction as follows� By 	�
 the action of G� on  U
is induced by an action on U � By 	�
 this action is transitive on 	  U 
�� If u 
 U n Z� is an
involution� then the class uZ� consists entirely of involutions� By transitivity of the action� U
is elementary abelian� But U � � ��

This contradiction shows that b � �� �

Proof of Theorem ���� Lemma B�� and Propositions C��� D��� and D�� yield the result� �

��
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