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FORBIDDEN SUBGRAPHS AND FORBIDDEN SUBSTRUCTURES 

GREGORY CHERLIN' AND NIANDONG SHI 

Abstract. The problem of the existeuce of a uuiversal structure omittiug a finite set of forbidden 
substructures is reducible to the corresponding problem in the category of graphs with a vertex coloriug by 
two colors. It  is uot known whether this problem reduces further to the category of ordinary giaphs. It is 
also not known whether these problems are decidable. 

Introduction. There is an extensive graph theoretic literature which deals with 
the following problem. Consider a class K of graphs (finite or countably infinite) 
which is defined by the nonembeddability of specified forbidder? subgraphs (e.g.. the 
classes of triangle-free, or planar. or bipartite graphs). Is there a universal graph in 
K ,  into which all graphs in K embed? Usually there is no universal graph of the 
desired type. and so the goal is to isolate and analyze the unusual cases in which 
there is such a universal graph. 

A variety of cases have been considered in which the set of constraints on K 
consists of a finite set of finite, connected forbidden subgraphs, and results of some 
reasonable generality have been obtained, such as [FK] for the case of a single 2-
connected forbidden subgraph. or [KM,CS] for an arbitrary finite set of forbidden 
cycles. (See [KP] or [CSS] for further references.) It is worth raising the question 
explicitly as to whether it is reasonable to seek a complete solution in this case, and 
since this is a decision problem of a conventional type the question can at least be 
posed rigorously: 

Is there an algorithnz whiclz determines for eachjinite set of$nite connected 
'~orbidden"gryhs,  whether the corresporzding universal graph exists, for 
the class of graphs omitting tlze specijied orzes? 

However there are two slightly different questions here, because there are two 
notions of universality which have been considered: we may require embeddings 
of graphs belonging to the class K either as subgraphs or as irzduced subgraphs of 
the universal graph. Both variants are reasonable and the analysis tends to be 
remarkably similar in either case, though the latter variant is somewhat easier to 
deal with. 

Work to date could be interpreted as the search for a clear-cut criterion that would 
make it evident that this problen~ is decidable. We are motivated here by the feeling 
that the problem may well be undecidable, which would put the results to date in a 

Received February 1,2000: revised May 2. 2000. 

' ~ e sea r ch  supported 111 part by NSF grant DMS 9803417. 


@ 2001. Association for Symbolic Logic 
0022-4812/01/6603-0021/$2.10 



1343 FORBIDDEN SUBGRAPHS AND FORBIDDEN SUBSTRUCTURES 

different light. There is a natural approach to a proof of undecidability. In the first 
place, the problem of the existence of universal graphs can be generalized to any 
class of combinatorial structures, and in that form appears to have some affinity 
with such problems as Wang's donzino yroblenzs, which are shown to be undecidable 
by a direct encoding of the halting problem [KMW]. So the following program 
comes into consideration: 

(A) Prove the undecidability of the generalized universal graph problem. preferably 
by some variant of the standard encoding methods. 

(B) Reduce the generalized form of the problem to the original case involving 
graphs. 

Unexpected difficulties arise, and we only managed to carry out a variant of 
(B), in which the generalized problem is reduced to the corresponding problem 
for graphs with a vertex coloring; it suffices to allow two colors to get a problem 
equivalent to the most general form. 

On the other hand. in the proof of this result, we are able to show that the two 
different notions of universality lead to problems of the same complexity (for the 
general case, or the case of graphs with a vertex coloring). 

Thus Problem (A) remains entirely open at this point, and Problem (B) amounts 
to the question whether the problem of the existence of universal graphs with 
forbidden subgraphs in the presence of a vertex coloring by two colors is harder 
than the corresponding question for uncolored graphs. 

Concerning Problem (A), we would strongly suggest that the variant in which 
the universal graph is required to be No-categorical is well worth considering. In 
the first place, known universal graphs tend to be either No-categorical. or of the 
degenerate type illustrated by the case of regular graphs of degree 2. Secondly, the 
combinatorial content of this variant can be analyzed explicitly and this analysis 
can be turned to account in practice. as shown in [CSS]. Indeed it is this version 
which exhibits the closest affinity to a domino problem. For an elucidation of these 
remarks the reader is referred to [CSS]. We believe that this case goes to the heart 
of the matter. 

We will give more precise statements of the results in 52, after laying out the 
terminology appropriate to the most general case of our decision problem in 51. 
The remaining three sections give the proof of the main theorem. 

$1. Terminology. Since we deal with combinatorial structures of a general type. 
we use the language of model theory. We fix a$nite relational language L: we allow L 
to impose (a)symmetry and (ir)reflexivity conditions on the relations as well. Thus 
by varying L we may consider the classes of graphs, tournaments, directed graphs, 
and the variants involving vertex colorings or edge colorings, as well as hypergraphs 
and the like. Equality is viewed as a logical relation rather than a structural relation, 
and is incorporated into the language L, though on one occasion we will treat it 
as a relation on much the same footing as the others. We can consider forbidden 
substructures and universal structures at this level of generality, as we will now make 
explicit. All structures considered will be either finite or countably infinite from this 
point on. 
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DEFINITION1. Let A!' be a relational structure. 

1. 2 is the graph whose vertices are the elements of A!': with two elements a ,  b 
adjacent if they are involved in some relation holding in A': that is, we require 
that R(cl:  . . . , c,') should hold for some sequence F containing a and b. 

2. 	A!' is connected if 2 is. 

DEFINITION2. Let A' and SS be relational structures of the same type, with 
underlying sets M and N,  and suppose M c N. 

1. A!' is a weak substructure of SS if the inclusion map is a homomorphism (every 
relation holding in A!' holds in SS). 

2. 	A' is a strong substructure of SS if the inclusion map is an isomorphism (every 
relation holding in A' holds in SS, and conversely). 

This is a deviation from standard model theoretic terminology, to avoid a conflict 
with established graph theoretic terminology. 

DEFINITION3. Let L be a finite relational language, %' a set of L-structures, K a 
class of L-structures. and A!' an L-structure. 

1. A' is %'-pee if no weak substructure of A!' is isomorphic with a structure in 'i?. 
2. 	A' is weakly (resp. strongly) universal for K if every structure in K is isomorphic 

with a weak (resp, strong) substructure of A'. 
3. 	A weakly (resp. strongly) universal %'-free structure is a %'-free structure which 

is universal for the class of %'-free structures. 

A remark on connectivity: If %' is a class of connected structures then the class 
of %'-free structures is closed under the fornlation of disjoint unions (in the natural 
sense), and it is only under the latter assunlption that it is natural to look for a 
universal structure. Komjath and Pach point out in [KP] that the question can be 
rephrased so as to make sense more generally. without changing its meaning in the 
case of connected constraints. We could easily follow their lead here, with some 
adjustments in ternlinology. 

52. Statement of results. We show that the following decision problems are equiv- 
alent: 

I. For L a finite relational language and %' a finite set of finite L-structures, 
determine whether there is a weakly universal %'-free L-structure. 

11. For L a finite relational language and %' a finite set of finite L-structures, 
determine whether there is a strongly universal %'-free L-structure. 

111.For %' a finite set of finite (0. 1)-colored graphs, determine whether there is a 
weakly universal 'i?-free (0. 1)-colored graph. 

IV. For %' a finite set of finite (0. 1)-colored graphs, determine whether there is a 
strongly universal 'i?-free (0. 1)-colored graph. 

Furthermore, if in each case we require the elements of %' to be connected (as is 
natural), then the four restricted problenls are also nlutually equivalent. 

A (0. 1)-colored g q h  is taken to be a graph with a partition of its vertex set V 
into two disjoint sets Voand V l ,or equivalently, a function f : V + (0, 1). Thus 
the set of colors is held fixed. 

The method of proof involves two reductions: 
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1, reduction of I1 to I. 
2.  reduction of I to both 111 and IV (by a single construction). 
This shows that all four problems are equivalent. 
It is an open question whether we can reduce further. from (0, 1)-colored graphs 

to ordinary graphs. The problem would be to find an analog of our 56 for this case. 
The fact that the two problems I11 and IV are equally difficult, at the level of 

graphs with a vertex coloring. confirms what experience would suggest in the case 
of ordinary graphs as well. As yet however that equivalence has not been proved 
for ordinary graphs. 

$3. The first reduction. 
THEOREM relatiorzal1. There is arz efective procedure which associates to a$nite 

language L arzd ajirzite set %' offirzite L-structures, another finite relatiorzal larzguage 
L*,and a$nite set %'* of$nite L*-structures so tlzat the following are equivalent: 

1. There is a strongly universal %'-free L-structure. 

2. There is a weakly universal %'*-free L*-structure. 

Furthermore, if the structures in %' are connected then the structures in %'* are 


connected. 
PROOF. Given L and %' we perform the following construction. 
1. L* = L U { R 1 :  R E L )  where for each relation syn~bol R in L ,  R1 is a new 

relation symbol with the same number of places whose preferred interpretation 
in a model is the complen~ent of R.  We will not be in a position to require this 
interpretation. however. 

2. For R a relation symbol with n places in L .  let %'; be the set of L*-structures 
which satisfy the condition: 

3x1 . . .3x,R(2)  A R1(.?) 

and which are minimal with this property. Note that such a structure has cardinality 
at most n ,  and is connected. 

3 .% '*=U{%' i :R E L ) U % ' .  
The carzonical expansiorz of an L-structure k to an L*-structure k*is formed 

by interpreting R' in k*as the complement of R.  i 

LEMMA1. If A' is a strongly universal %'-free L-structure. then A*is a weakly 
universal %'*-free L*-structure. 

PROOF. Clearly A* is %'*-free. Let A'* be any %'*-free L*-structure, and set 
A' = A'* rL. Then A' is %'-free and hence there is a strong embedding f : A' + 

k .  Viewed as a map from A'* into k*,this gives a weak embedding of L*- 
structures. i 

LEMMA2. If k*is a weakly universal %'*-free L*-structure. then k*rL is a 
strongly universal %'-free L-structure. 

PROOF. Let k = A*rL. Clearly this is %'-free. Now let A' be a %'-free L- 
structure. Then A'* is a %'*-free L*-structure and by assunlption there is a weak 
embedding f : A'* + k * .  By the construction of A"*,this amounts to a strong 
embedding of A' into k,as required. i 

Theorem 1 follows. Thus problem I1 is reducible to problem I. 
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84. The second reduction. Let Lo  be the language of (0. 1)-colored graphs. that 
is, graphs equipped with a coloring of the vertices by two fixed colors 0 and 1. We 
wish to show: 

THEOREM2. There is an effectivep1,ocedure whiclz associates to any$nite relational 
L-structures. afinite set go offirzite (0. 1)-colored 

graplzs. so tlzat tlze following are equivalent: 

1. There is a weakly universal %'-pee L-structure. 
2. Tlzere is a weakly universal gofree (0. 1)-colored g r y h .  
3. Tlzere is a strongly universal go'o-fee (0, 1)-coloredgraph. 

Furtlzernzore, if the structures in 5?? are conrzected, then tlze (0. 1)-colored graphs in 
goare connected. 

Construction. We begin by defining certain (0. I )-colored graphs W; which will 
be called witness graphs. 

Let I be the set of triples (R,  n,i )  for which: 
(i) R is a relatioil symbol of L ,  with n places, 

(ii) n is a partition of the set (1, . . . .n). and 
(iii) 1 5 i 5 M .  
Let N = lI and let p :  I +N be 1 - 1 and satisfy: p ( i )  > 1 for all i E I;for all 

il. i2, i3 E I we have p(i1) + p(i2) # p(i3) + 1 
For d l , .  . . .dl, > 1, a star of type (d l ,  . . . ,dl,) is a (0. 1)-colored graph formed 

by taking Ic + 1 paths Po,. . . .PI,,with P, of length d,. and identifying their initial 
vertices, then coloring the resulting graph as follows: the terminal vertex of each 
path is given color 0. and all other vertices have color 1. Thus a star is. in particular. 
a tree with a unique vertex of degree greater than 2, called the cerzter: and the vertices 
of color 0 are the leaves of this tree. The k + 1 leaves of the star will be denoted 
a l ,  . . . , a],. in order. 

The witrzess graph W i  associated with a relation R E L having n places, and a 
partition n of (1. .  . . .n) with n .  classes. is the star of type 

where i, = min{n,). (nJ) j51nlbeing an enumeration of the classes in rc. In general 
the final entries 1, 1 are not needed, but we wish to ensure that k 2 2 in all 
cases. Intuitively, W; represents the assertion that R(x1, . . . ,x,) holds. where for 
1 < i < n, if i E n, and i* = mirz{z,), then x,represents a , - .  

Using these witness graphs. our construction proceeds as follows. We give a 
procedure which associates to an L-structure &, a (0, 1)-colored graph GA. We 
then list some (0, 1)-colored graphs which are omitted by GA. if & omits %'. This 
gives us a candidate for the class go.The proof that the class gohas the required 
properties involves considerable checking. 

For an L-structure. the construction of G,# is as follows. Let Vo be the under- 
lying set of &, i.e.. the universe of the structure, 1 & I .  View Vo as an independerzt set 
of vertices of color 0. For each relation R ( b l , .  . . .b,) holding in 4.including the 
equality relation, consider the partition n of (1. . . . ,1z) consulting of the equivalence 
classes for the relation 
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and attach the witness graph W," freely to Vo. identifying its leaves a ' .  . . . .n1.l with 
the given b, E Vo. Note that two of the leaves of W," are not identified with elements 
of V,. 

Construction of go. gowill consist of certain finite (0. 1)-colored graphs which 
in fact cannot embed in GM. We must restrict ourselves to a finite number of these. 

NOTATION.Let G be a (0. 1)-colored graph. where V(G) = Vo(G)U VI (G) gives 
the coloring. 

For v E V1 (G).  let C, be the connected component of v in the graph G r Vl (G)),  
and set 

C: = C, u {the immediate neighbors of C,) 

We now list some properties of G,c which follow at once from our construction. 
These properties can all be expressed by the omission of some finite set of (0. 1)- 
colored graphs. and these forbidden graphs will form the set go. 

1. For any v E Vl. C: always embeds in one of the witness graphs W i .  

This property of GA can be expressed by saying that GM is %',,')-free, where 

55';') consists of the minimal graphs which violate this condition. Observe that 
these minimal counterexamples are of bounded size, and hence %',il)is finite (with 

the usual proviso that %',,'Icontains only one representation of each isomorpl~ism 
type). 

2. 	For each R. n, and vl, . . . . vl. of color 0. there is at most one copy of the 
witness graph W," attached to fi. 

Again. this can be expressed as: G4# is 'i?i2)-free. for a suitable finite set %',,'I of 
(0, 1)-colored graphs. 

3. 	Vo is an independent set. 

Here %',,3) should consist of a single edge, with endpoints of color 0. 
4. 	 (a) If a vertex of color 0 lies at distance 1 from a vertex of degree at least 3. 

then it has degree 1. 
(b) If two vertices of color 0 are connected by a path of vertices of color 1. 

of total length p(R,n,i )  + 1, then at least one of the two vertices has 
degree 1. 

(c) If two vertices of color 0 are connected by a path of length 2. then each 
has degree 1. 


This corresponds to a finite set of constraints %',i4). 

5.  	%',is){GA:A E 55').= 

Let %',, go u %',i2) By OLIS construction it is clear that if .l= U'i?J3)u 'i?J4)u %',is). 
is %',-free, then G,# is %',,-free. 

With this choice. we claim that Theorem 2 holds. We require 2 * 1 * 3. The 
proof of this claim occupies the next two sections. 

55. Theorem 2 ,2  * 1. The notation was established in the preceding section. 
Given a weakly universal %',,-free (0. 1)-colored graph G. we wish to extract from 

it a weakly universal 'i?-free L-structure &(G).  



1348 	 GREGORY CHERLIN AND NIANDONG SHI 

CONSTRUCTION.Let G be a (0. 1)-colored graph. Set 

M (G) = {v E Vo(G): 	 v does not lie at distance 1 from any vertex of degree 
at least 3. and is not at distance p(R,  n, i )  + 1 from 
any vertex of color 0 and degree at least 2 along any 
path whose internal vertices have color 1. 
for any R. n, i). 

We impose on the set M = M ( G )  an L-structure k as follows. For R E L an 
n-place relation (other than equality). n a partition of (1, . . . , n), G = (vl.. . . , u , )  
a sequence of elements of M .  and xl.  . . . , x, an enumeration of G with repetitions 
corresponding to z ,  we take R(x l ,  . . . , x,) to hold in k if and only if the colored 
witness graph W," embeds into G over G. 

The resulting structure is called k ( G ) .  Our claim is 

PROPOSITION1. If G is a weakly universal %?,-free (0. 1)-colored graph, then 
k ( G )  is a weakly universal %?-free L-structure. 

LEMMA5.1. Let G be a %?,-free (0. 1)-colored graph. Then G,#(,) embeds canon- 
ically into G over M (G).  

PROOF. Gdfl(,) is obtained from M ( G )  by freely attaching appropriate witness 
graphs W," over subsets of M (G).  We claim that G, being go-free, has the following 
properties: 

1. For any R E L. an 11-place relation syn~bol, any partition n of (1, . . . ,n), and 
any sequence G = (vl. . . . , vI.) in M ( G ) ,  there is at most one copy of the witness 
graph W," attached to vl, . . . .vl,l, and if there is one then it meets M ( G )  only in fi. 

2. For any two distinct witness graphs Wl. W2 attached to sequences c( ') ,G(2)  
in M ( G ) ,  the attachment is free over M ( G ) .  That is, V( Wl) n V( W2) is the 
intersection of d l )  and ~ ( ~ 1(as sets of vertices). 

The uniqueness claim in (1) is not critical. but serves to clarify the picture. In any 
case it is taken care of by consideration of gJ2). 

To complete the proof of ( I ) ,  we argue that any copy of W; attached to vl , . . . .v.1 
meets M ( G )  only in G.  This is taken care of for the most part by the coloring. The 
two "extra" leaves of W," cannot be in M ( G ) ,  as they are adjacent to vertices of 
degree at least 3. 

Now (2) could be ensured by imposing an additional requirement on %?,,and 
this is entirely reasonable. However we claim that this is unnecessary. Suppose 
that Wl = W,": and Wz = W,": are attached to fi('). G(2)  respectively. These are 

stars. As G is %?J4)-free. if Wl meets W2 in a vertex outside the intersection of 
G ( ' )  and ~ ( ~ 1 ,then they meet in a vertex v of color 1. In this case, C,f einbeds in 
some W,". In particular Wl U W2 is a star, with a unique center c.  Any path of 
length greater than 1 beginning at c and terminating at a leaf is of length p(R,  n, i)  
for some unique triple (R. n. i ) ;  and R,  n are independent of the path chosen. So 
R1 = R2 = R,  z1 = n2 = z ,  and the degree of c is at most n + 2. it follows easily 
that Wl = Wz i 

COROLLARY.If G is a go-free (0, 1)-colored graph. then k ( G )  is %?-free. 

PROOF. As Gdfl(,) embeds in G, it is %?J5)-free. 	 -I 
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LEMMA5.2. For any L-structure A',,k ( G d f l 0 )= do. 

PROOF. Evidently M(Gdfl0)is the underlying set of ATo.and it should be clear that 
the construction of GAocreates no unintended witnesses. -1 

Now the proof of Proposition 1 will be reduced to one additional lemma. Let 
G be a weakly universal %',,-free (0, I)-colored graph. Our claim is that & ( G )  is a 
weakly universal '2?-free L-structure. Let be a %'-free L-structure. Then G L ~is 
a %',,-free (0. I)-colored graph. Fix a weak embedding j ' :  GAO+ G .  We wish to 
derive from this a weak embedding of into &(G) .  Thus the following suffices 
in view of Lemma 5.2. 

LEMMA5.3. Let G be a %',-free (0. I)-colored graph. an L-structure. and 
f : Gdf10+ G a weak embedding. Then 

1. f [M(G,flO)lc M ( G ) .  
2. As a map from &(GLO) into &(G) .  f is a weak embedding. 

PROOF.1. In G,flO. every vertex in the underlying set of has a witness to 
"v = v" attached to it. Taking into account that G is %',t)-free, our claim follows 
easily. 

2. Given ( I ) ,  this is immediate. i 

$6. Theorem 3, 1 * 3. Given a weakly universal %-free L-structure A?,we 
wish to construct a strongly universal %',,-free (0. 1)-colored graph. This graph will 
be a certain extension of GL which we will call G 2 .  

CONSTRUCTION.Let G be a (0, 1)-colored graph. Apartial witness is any proper 
(0. I)-colored subgraph of a (0, I)-colored graph of the form W,". 

The graph G* is constructed from G by attaching. freely. infinitely many copies of 
all partial witnesses in all possible ways. More precisely. for each sequence G from 
M ( G ) ,  and for each partial witness W of an appropriate form. attach infinitely 
many copies of W to G. freely. To determine whether W is appropriate requires 
that W is given explicitly as a subgraph of some W,". In this case. all but two of the 
leaves of W," represent potential elements of M ( G ) .  We require that the number 
of such leaves which lie in W should equal the length of C,so that the attachment 
process is sensible. Note that possibly G is empty and we take a disjoint union in 
this case. 

PROPOSITION2. If A? is a weakly universal %',-free L-structure. then G> is a 
strongly universal %',-free (0, l )-colored graph. 

LEMMA6.1. If & is %',-free then G> is %',,-free. 

PROOF. Let G = Gd. We use only the following facts: 
(1) G is %',,-free. 
(2) No connected component of G is a path. 

Now the only constraints that present any difficulties are those in %',,I,
and here 

our primary concern is with one constraint: if two centers v. w of color 0 are 
connected by a path of vertices of color 1. with the total path length of the form 
p(R,z.i )  + 1, then at least one of the vertices has degree 1. 
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In the case of Gel this is rather evident. We argue as follows in the slightly more 
general case in which oilly conditioils ( I ,  2) are assumed. Firstly, all new vertices 
of color 0 added in passing from G to G* will have degree 1 and therefore pose 
no problems. Secondly, between pairs of vertices of color 0 in G ,  no new paths of 
the relevant lengths will be created. Thus we need only concern ourselves with the 
following case: v, w are vertices of color 0 in G. and with a path of the specified 
type connecting them. 

If v has degree greater thail I ,  then w has degree 1 and lies outside M ( G ) .  Hence 
in G* the degree of w remains 1. 

Thus we need only consider the case in which both v and w have degree 1. and 
lie in M ( G ) .  In such a case G* would indeed violate our constraint. However we 
claim that in this case the connected component of v in G would reduce to a single 
path connecting v to w .  Let P be the given path connecting v to w .  If P is not the 
whole of this connected component. then it contains a vertex u of degree at least 
3. Then C,: should embed in a witness graph W;. The structure of these witness 
graphs forces 21 to be adjacent to v and w .  But then correspondingly v or w lies 
outside M(G) .  a contradiction. 4 

For the proof of Proposition 2 we take d a weakly universal g-free L-structure 
and we coilsider G2.  Take G a@-free (0, I)-colored graph. We wish to show that G 
embeds strongly in G>/. We may take G existentially complete in the class of @)-free 
(0. I)-colored graphs. By assumption we have a weak embedding f : d ( G )  + d. 
To conclude we prove the following three lemmas. 

LEMMA6.2. Let f : dl + AT2 be a weal< embedding of L-structures. Then 
f extends canonically to a strong embedding f * : GM, + GL, of (0. I)-colored 
graphs. 

PROOF. Immediate. -I 

LEMMA6.3. Let dland d2be L-structures and let f : GL~+ G,f12 be a strong 
embedding of (0, 1)-colored graphs. Then f extends to a strong embedding of GsfI 
into GJ>?. 

PROOF. It s~~ffices C M(GJc2). This is rather straightfor- to show that f [M(GA,)I 
ward given that equality is taken as a relation of R and therefore every v E M ( G L ~) 
has at least one witness graph attached. -I 

LEMMA6.4. Let G be existentially closed in the class of go-free (0. I)-colored 
graphs. Then G embeds stroilgly in Gd(,). 

PROOF. We showed in Lemma 5.1 that Gdfl(,) embeds canonically in G over 
M ( G ) .  We claiin first that this is a strong embedding. For v E V(G,(,)) we 
consider C ,  and C: as defined in 82: these are to be con~puted in G,t(G). We claim 
that G r V(C;) = C; and that the edges of G r V(C;) U V(C2)  are internal to C: 
or C:. In both cases our claiin follows by considering C: as computed in G,  and 
recalling the significance of 57;'). which forces the result to be the same whether the 
computation is made in G or in G,(,). Since there are no edges between vertices 
of color 0. it follows that the embedding of G,#(,) in G is strong. So we will view 
GM(,) as an induced subgraph of G. 
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Now let V' = V ( G )\ V ( A ( G ) )and V/  = V'  n Vi ( G )  for i = 0.1. For v E V,' 
we consider C,f as computed in G. We make the following claims. 

(1) 	V 1= U{V(C,+):v E V,'). 
(2)  C,f is a partial witness for v E V,'. 
(3)  C: [ [ V 1n v(C:)] is the connected component of v in G 1V'  for v E V,'. 
( 4 )  	V(C,+)nV(G,(,)) c M ( G )and this iiltersectioil consists of all vertices of C,+ 

which are intended to represent vertices of A ( G ) ,relative to some embedding 
of C,+ in a witness graph W,".for v E V;. 

Note that these claims suffice to complete the proof, since jointly they meail that 
the various C: are partial witnesses which are freely attached to appropriate subsets 
of M ( G ) .and which cover both the vertices and edges of G not in G r V ( G d ( G ) ) .  

1 .  V 1= U{V(C,'): v E V,'}. 
The claim here is that each vertex v E V , is adjacent to a vertex in V,'. Now 

if v is adjacent to some vertex w ,  then w E Vl  ( G )  and easily w 6 Vl  ( G x ( G j ) .  as 
otherwise v E V(C:) C V ( G M ( G ) ) .So it suffices to show that v is not isolated in 
G. However this is immediate by existential con~pleteness: if v were isolated, then 
the extension GI of G in which a is given one neighbor of color 1 would again be 
go-free, and this contradicts existential completeness. 

2. C: is a partial witness for v E V;. 

In view of the nature of %':I). C: embeds in a witness graph W;. If C; Y W i  
then tracing through the definition it is easy to see that C,f C GdiG) .using the 

constraint set 'i?J2)as well. This contradicts the choice of v ,  so C,f is a partial 
witness. 

3. For v E V,', C: r V' U V(C;) is the coilnected component of v in G rV1. 
One inay check easily that for v E Vl  (G,(,)). all immediate neighbors of v lie in 

V(G,(,)), using the constraint set 'i?,').Thus for v E V,' we have V(C,)  C V,'. It 
follows that V 1n V(C:) is contained in the connected component of v in G r V ' .  

If V' n V ( C , f )is not the whole of the connected compoilent of v in G r V ' . then 
there are adjacent vertices wl E V' n V(C,+). w2 E V 1 ( C , f ) .If wl E V,' then 
wl E C, and hence w2 E C,f . Accordingly we must have w 1 E V , .As wl 6M ( G ) .  
we have one of the following: 

(i) wl is adjacent to a vertex of degree 3. 
(ii) wl is at distance p(R .n,i )+ 1 from a vertex of color 0, and degree at least 2, 


along a path whose internal vertices have color 1, for some R. z.i .  


However in both cases wl has degree 1 and is adjacent to a vertex in C,. so 
W2 E V(C,) .  

4. For v E V,', we have V(C,+)n V(G,(,)) c M ( G ) . and this intersection 
consists of all vertices of C,+ which are intended to represent vertices of A ( G ) .  
relative to some embedding of C: into a witness graph W,". 

The first of these two points is straightforward. V1 (C:) = V1 (C,) and this is 
disjoint from V(G,(,)). as already noted. So V(C,+)n V(G,(,)) c VO(G,~( , ) ) .  
If v E Vo(C;) n Vo(GJfl(,))\M ( G )  then as in the proof of (3) v has degree 1 and 
hence has a neighbor in V1 (C,) n V (G,(,)), a contradiction. 

For the second point, we first must make the content of the assertion more explicit. 
C,f is a connected partial witness, and has at most one vertex of degree greater than 
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2. its center. When there is such a vertex then let S consist of the vertices of color 0 
at distance greater than 1 from the center. Our claim in this case is 

(A? V(C,'? n V(G,fl(G)?= S. 

This is straightforward in view of the constraints on G. 
There remains the case in which C: consists of a path through v whose vertices 

of color 0 (if there are any) appear at the ends. Here one must consider all possible 
embeddings into a witness graph. The critical case is that in which C: consists of a 
path with both endpoints of color 0. whose length is of the form p(R, 71. i )  + 1 for 
some R, 71. i .  In this case our claim becomes: 

(B? IV(C,'? n V(G,fl(G)?I= 1. 
We will show that in G exactly one of the endpoints of C,* has degree 1. In 

particular this endpoint is not in M (G),  and the other one is in M (G),  by inspection 
of the definitions and the constraints in G. So this will suffice for the proof of (B). 

One of the constraints on G states that at least one of the endpoints of C,+ has 
degree 1. We must eliminate the possibility that both endpoints have degree 1. Let 
w be one of these endpoints. and form GI by giving w a second neighbor of color 1. 
Then GI is again go-free (the main concern here is withgi4)) and then the embedding 
of G into G' contradicts existential completeness. Our claim follows. -1 
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