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A

The paper gives an explicit classification of the finite groups which are homogeneous in the sense of
Fraı$ sse! .

1. Introduction

A group G (or for that matter, any type of algebraic or combinatorial structure)

is said to be homogeneous if any isomorphism between two finitely generated

subgroups (respectively, substructures) is induced by some automorphism. The study

of homogeneous structures has long engaged the attention of model theorists ; the

combinatorial case (where there are relations but no functions, so ‘finitely generated

substructure’ simply means ‘finite induced substructure’) is discussed in [6, 17, 18] for

example. The classification of homogeneous rings and groups, not necessarily finite,

has also been investigated in detail, but there are strong indications that in the

nilpotent case the homogeneity condition is not sufficiently strong to allow a full

classification; see for example [8, 23, 24].

We examined homogeneous solvable groups in [7], showing that apart from the

difficulties associated with homogeneous nilpotent groups of class 2, one can pin

down the structure of these groups quite precisely, even in the infinite case. As one

would expect, in the context of finite groups the homogeneity condition is so

restrictive that one may make an explicit and relatively short list of all the possibilities

– at least, under the assumption that the classification of the finite simple groups is

correct. In our argument we will make some attempt to limit our use of this

assumption. For example, we will prove the special case of the Feit–Thompson

theorem that we actually require, since this can be done rather directly, and in fact

all we will really need from classification theory is the contents of [21], together with

the earlier results on which that depends, such as [2]. Possibly more direct arguments

can be found. The present article was conceived as a companion to [7], but has been

delayed by the search for arguments of a comparably elementary character.

Our result is as follows.

M T. A finite group G is homogeneous if and only if G is of the form

H¬K with H,K homogeneous finite groups of relati�ely prime order satisfying

(1) H is sol�able;

(2) K is either tri�ial or is of the form SL(2, 5) or PSL(2, p) with p¯ 5 or 7.

Received 19 April 1999; revised 17 January 2000.

2000 Mathematics Subject Classification 20D45 (primary), 03C10 (secondary).

First author’s research supported in part by NSF grants MCS-7606484 and DMS 8603157, and the
Alexander von Humboldt Foundation.

J. London Math. Soc. (2) 62 (2000) 784–794. ' London Mathematical Society 2000.

https://doi.org/10.1112/S0024610700001484
Downloaded from https://www.cambridge.org/core. Rutgers University Libraries, on 13 Sep 2021 at 19:49:46, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0024610700001484
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


   785

As the homogeneous finite solvable groups are known explicitly, this gives an

explicit classification of the homogeneous finite groups. The finite solvable case was

first completed by P. Neumann.

F 1 [7]. A finite solvable group H is homogeneous if and only if it is of the

form A¬H
!

with A,H
!

homogeneous finite groups of relatively prime orders,

satisfying the following:

(1) A is abelian.

(2) If H
!
is nontrivial then it is of the form VnT, where the possibilities for the

pair (V,T ) and the action of T on V are as follows:

(a) V is homogeneous abelian of odd order and T is a cyclic 2-group generated

by an element which inverts V.

(b) V is an elementary abelian 3-group of order 9, and T is the quaternion

group, acting faithfully as a subgroup of SL(V ).

(c) V is an elementary abelian 2-group of order 4, and T is cyclic of order 3,

acting faithfully on V.

(d) V is a homogeneous finite nonabelian 2-group and T is either trivial, or is

cyclic of order 3, acting faithfully on V.

Evidently a finite abelian group A is homogeneous if and only if it is a product of

homocyclic groups of relatively prime orders.

F 2 [7]. There are up to isomorphism exactly two homogeneous finite

nonabelian 2-groups, and each of them admits an automorphism of order 3. These

groups are the quaternion group Q of order 8 and a group Q* of order 64, class 2,

and exponent 4, with Z(Q*)¯Ω
"
(Q) elementary abelian of order 4.

The group Q* and its automorphism group are discussed in detail in [7].

We will only need the classification theorem for finite simple groups in our

determination of the homogeneous quasisimple groups (that is, perfect central

extensions of simple groups), but this remark may be misleading, as the latter

classification is needed also to get the more general structural information in the main

theorem. More precisely, we prove the following two results.

T 1. Let K be a quasisimple homogeneous finite group Then

(1) if K is not simple then KDSL(2, 5) ;

(2) if K is simple then KDPSL(2, p) with p¯ 5 or 7.

We have stated the two points separately as only the second one requires

substantial background information. Note however that we will invoke [12] to

complete the proof of Theorem 1(1).

T 2. Let G be a finite homogeneous group. Then G¯H¬K with H,K

homogeneous and of relati�ely prime orders, satisfying

(1) H is sol�able;

(2) K is quasisimple or tri�ial.

The proof of Theorem 2 does not require any substantial information about finite

simple groups, apart from Theorem 1(2). On the other hand we do need Theorem 1(2)

to control the automorphism group of a quasisimple homogeneous group.
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Our notation is standard. We use the notation Ω
i
(G) only when G is a p-group

for some prime p ; then Ω
i
(G) is the subgroup of G generated by elements of order at

most pi.

2. Preliminaries

Our first lemma shows that one of the implications in the main theorem is a

triviality, and hence the main theorem will follow from Theorems 1 and 2 once one

checks the homogeneity of the quasisimple groups listed.

L 1. Let G be a finite group.

(1) If G is homogeneous and K is characteristic in G, then K is homogeneous.

Furthermore in this case if K contains an element of order n, then e�ery element of order

n in G belongs to K.

(2) If G¯H¬K with H characteristic in G then G is homogeneous if and only if H

and K are homogeneous and of relati�ely prime orders.

This is straightforward. The following principle is also very useful.

L 2. Let G be a group and H be any subgroup such that e�ery element of

AutH lifts to an automorphism of G. Then N(H ) induces a normal subgroup of

AutH on H.

Note that Lemma 2 applies in particular when G is homogeneous, and H is any

finite subgroup.

L 3. Let G be a homogeneous finite p-group. Then either G is homocyclic or

p¯ 2, in which case the possibilities are those listed in Fact 2(2).

This information is contained in Facts 1 and 2 and is also a special case of other

group-theoretic results. For p odd it is contained in a result of Shult [25] : if the

elements of order p in G lie in a single orbit under AutG, and p is odd, this already

implies that G is abelian. Similarly for p¯ 2 the result can be read off from the

classification of Suzuki 2-groups [14].

The point of this is that we may combine Lemmas 1 and 3 to conclude the

following.

C 1. Let G be a homogeneous finite group. Then either O
p
(G) is

homocyclic, or p¯ 2 and O
#
G is Q or Q*, as in Fact 2.

In this connection it is useful to know the following.

L 4. Let G be Q or Q*. Then AutG is sol�able.

For AutQ*, see [7].

We will need to analyze the group of automorphisms induced by a finite

homogeneous group on a characteristic subgroup. The following result will be useful.

L 5. Let G be a homogeneous finite group and H be a characteristic subgroup.

Then for any natural number n there is a number n* such that e�ery element of G}H of
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order n is represented by some element of order n*. In particular any two elements of

G}H of order n will lie in the same orbit under the action of Aut(G}H ).

Proof. The second claim follows from the first by homogeneity in G.

For the first claim, let π be the set of prime divisors of n. We claim that if an

element ga of order n in G}H is lifted to an element g whose order n* is a π-number,

then the value of n* is independent of all choices made.

We deal first with the case in which n is a power of a prime p. If g, g« are p-elements

of G both of order n modulo H, say with o(g«)% o(g), then o(g«)¯ o(gk) for some k

and hence by homogeneity g« and gk have the same order modulo H. Hence (p,k)¯ 1

and g, g« have the same order, as claimed.

The general case follows by factoring a lifting g of ga as 0
p
g
p

where the g
p

are

commuting p-elements. *

3. The proof of Theorem 2

In this section we assume the validity of Theorem 1 and we prove Theorem 2. We

will make use of the generalized Fitting subgroup F*(G)¯F(G)[E(G), in Bender’s

notation: that is, F(G) is the Fitting subgroup and E(G) is the central product of the

subnormal quasisimple subgroups of G. The proof will depend on the following

results.

P 1. Let G be a finite homogeneous group with E(G)¯ 1. Then G is

sol�able.

P 2. Let G be a finite homogeneous group with E(G) nontri�ial. Then

E(G) is quasisimple.

This last result relies on the Feit–Thompson theorem, but the following simple

special case suffices.

P 3. There is no quasisimple homogeneous finite group of odd order.

Assuming these ingredients, we prove Theorem 2 as follows. Let G be a

homogeneous finite group, K¯E(G), and H
!
¯C(K ). By Lemma 1, H

!
and K are

homogeneous and so by Propositions 1 and 2, H
!

is solvable and K is trivial or

quasisimple. We may suppose that K is nontrivial. Then by Theorem 1, K is SL(2, 5)

or PSL(2, p) for p¯ 5 or 7.

We show that G¯H
!
K. If this fails, then some element g `G induces an outer

automorphism of K. We may take g to be a 2-element. Note that g# `H
!
and g ¡K ;

in particular g is not an involution. Some power h of g is an involution in H
!
fK and

this forces K¯SL(2, 5). Then some power of g is an element of order 4 in H
!
fK and

this is a contradiction.

Thus G¯H
!
K. If H

!
fK¯ 1 then we have the desired conclusion. The alternative

is that K¯SL(2, 5) and HfK¯Z(K ). In this case Z(K ) is a Sylow 2-subgroup of H
!

by Lemma 1(1) and hence H
!
¯Z(K )¬O(H

!
), G¯O(H

!
)¬K, which is of the

desired form. This completes the proof.

For the proof of Proposition 1, as we assume that E(G)¯ 1 we have C(F(G))¯
Z(F(G)) and thus for the solvability of G it suffices to check the solvability of
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G}C(F(G)), which embeds into 0
p
Aut(O

p
(G)) ; so it suffices to check the solvability

of G}C(O
p
(G)) for each p. This will reduce to the case p¯ 5, as we see from the next

lemma.

L 6. Let G be a homogeneous finite group, and p be a prime. If G}C(O
p
(G))

is nonsol�able, then p¯ 5, O
p
(G) is an elementary abelian group of order 25, and

G}C(O
p
(G))DSL(2, 5).

Proof. Let A
p

be G}C(O
p
(G)) viewed as a subgroup of AutO

p
(G), and write

V
p
¯Ω

"
(O

p
(G)). Suppose that A

p
is not solvable. The kernel of the natural map

A
p
MNAutV

p
acts trivially on each quotient Ω

i
(O

p
(G))}Ω

i−"
(O

p
(G)) and is

therefore solvable, so the subgroup Aa
p

of AutV
p

induced by G is nonsolvable.

By Lemma 2, Aa
p
TGL(V

p
). If Aa

p
is not solvable we conclude that SL(V

p
)%A

p
.

Furthermore by Lemma 5 applied to G}C(V
p
), any two elements of Aa

p
of equal order

are conjugate in GL(V
p
). This applies in particular to SL(V

p
) and since dimV

p
" 1 in

the nonsolvable case, we find easily that dimV¯ 2 and p% 5 by considering

elements of order p, multiplication maps by elements of norm 1 (identifying V
p

with

the additive group of a finite field) or diagonal matrices, according to whether

dimV
p
" 3, dimV

p
¯ 3, or dimV

p
¯ 2 with p" 5. As we assume Aa

p
is nonsolvable,

we have dimV
p
¯ 2 and p¯ 5.

We also have O
&
(G)¯V

&
, since otherwise using the fact that O

&
(G) is homocylic

with Ω
"
O

&
(G)¯V

&
, and that SL(V

&
)%Aa

&
with A

&
normal in Aut(O

&
(G)), we can

easily find elements of order 5 in A
&
which are nonconjugate in AutO

&
(G), one acting

trivially on V
&
, the other nontrivially. Similarly, G}C

G
(V

&
)DSL(2, 5) as otherwise this

group, viewed inside GL(V
&
), contains nonconjugate diagonal matrices of equal

order. *

We will reduce the proof of Proposition 1 to the following special case.

L 7. Let G be a homogeneous finite group with C(O
&
(G))%O

&
(G)[Z(G).

Then G is sol�able.

Proof. It suffices to show that G}C(O
&
(G)) is solvable, so by Lemma 6 we may

suppose toward a contradiction that O
&
(G) is elementary abelian of order 25, with

G}C(O
&
(G))DSL(2, 5). Write V for O

&
(G). Let a `G be a 2-element acting on V by

inversion. Then a# `Z(G). We claim that G¯V¬C(a).

For g `G a 2«-element we have [a, g] `O
&
(G)[Z(G) and 1¯ [a#, g], so a inverts [a, g]

and hence [a, g] `V. Then for a suitable � `V we have [a, g�]¯ 1 and hence g� `C(a).

Thus G¯V¬C(a). Therefore C(a) contains an element of order 5 which

contradicts Lemma 1(1) as V is characteristic in G. *

Proof of Proposition 1. We suppose that G is finite and homogeneous with

E(G)¯ 1. We will show that G is solvable. Let K¯C(O
&
(G)). Then E(K )¯ 1 and

O
&
(K )%Z(K ) so by Lemma 6, K induces a solvable group of automorphisms on

O
p
(K ) for all p, and hence K is solvable. Hence by Fact 1, K¯O

&
(G)¬H with H a

5«-group. As O
&
(H )¯ 1 it also follows from Lemma 6 that G}C(F(H )) is solvable.

By Fact 1, Aut(H}F(H )) is solvable, so C(F(H ))}C(H ) is solvable. Thus it remains
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only to show that C(H ) is solvable. Let H*¯C(H ). This is a homogeneous finite

group with O
&
(H*)¯O

&
(G) and

C
H*(O

&
(H*))¯KfC(H )¯O

&
(H*)¬Z(H )%O

&
(H*)[Z(H*).

Thus Lemma 7 applies and H* is solvable. *

Proof of Proposition 2. Let G be a homogeneous finite group with E(G)

nontrivial. We wish to show that E(G) is quasisimple. We may suppose that G¯E(G).

Thus G is a central product of quasisimple components.

Let K be one of these components, p be a prime dividing rK r, and pn be the

maximal order of a p-element of Z(K ). As K is quasisimple (and in particular perfect)

there are elements of order p in K}Z(K ), and these are represented by elements of

order pn+" in K, by homogeneity. Let a `K have order pn+". Then the normal closure

of a in G is K ; so for any element of this order, its normal closure is a component of

G, and ap `Z(G).

From these considerations it follows easily that the orders of the components of

G are relatively prime. An application of the Feit–Thompson theorem shows there is

only one component; alternatively, as these components are characteristic and hence

homogeneous, we may use Proposition 3 instead. *

The rest of this section is devoted to a short proof of Proposition 3, which is of

course a special case of the Feit–Thompson theorem.

L 8. Let G be a homogeneous finite group of odd order, p be a prime, and P

be a p-subgroup of G. Then Ω
"
P%Z(P).

Proof. Assuming the contrary, let i be minimal such that Z
i
(P)cZ(P) contains an

element a of order p, and set A¯©a,Ω
"
Z(P)ª. Thus A is elementary abelian of rank

at least 2 and N
P
(A) induces a nontrivial automorphism of A, since if j is minimal with

[a,Z
j
(P)]1 1 one finds [a,Z

j
(P)]%Ω

"
Z

i−"
(P)%A.

By Lemma 2, N
G
(A) induces a normal subgroup of GL(A) and as this subgroup

contains a p-element, it contains SL(A) ; but that group contains involutions, a

contradiction. *

Proof of Proposition 3. Let G be a homogeneous finite group of odd order, and

p be the least prime divisor of the order of G. We show that G is solvable, proceeding

by induction on rGr.
We will show that for any p-subgroup H of G,N(H )}C(H ) is a p-group. This is

a standard criterion for the existence of a normal p-complement [11, 7.3.5]. Hence

G«!G, and induction applies to conclude.

Accordingly we fix a p-subgroup H of G and consider N(H )}C(H ). Let A¯
Ω

"
H, and P be a Sylow p-subgroup containing A. Then A%Z(P) by Lemma 8, and

N(A)}C(A) is a p«-group, normal in GL(A). As N(A)}C(A) has odd order and p" 2,

it follows that N(A)}C(A) is trivial (if A is cyclic, we use the minimality of p at this

point).

Thus N(H ) acts trivially on Ω
"
H. As p is odd, it follows that N(H )}C(H ) is a

p-group [11, 5.3.10].
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4. Homogeneity of SL(2, 5) and PSL(2, p) for p¯ 5 or 7

One checks the homogeneity of these three groups by a computation which we

summarize here.

Let G be a finite group. In order to check the homogeneity of G, in practice one

checks the following two conditions.

(H1) Any two isomorphic subgroups of G lie in the same orbit under the action

of AutG.

(H2) AutG induces AutH on any subgroup of G.

It is convenient to identify PSL(2, 5) with Alt5 and PSL(2, 7) with GL(3, 2). Note

that an outer automorphism of GL(3, 2) fuses two orbits of elements of order 7.

For cyclic subgroups, conditions (H1) and (H2) mean that elements of equal order

are in the same orbit under AutG. In the cases at hand one verifies this directly for

elements of prime order or order 4, and conditions (H1) and (H2) then follow for

subgroups of order 2p, with p an odd prime, as they will be either the centralizer or

the normalizer of a Sylow p-subgroup in each of our three cases.

For Sylow subgroups one must check (H2). For example in GL(3, 2) we get an

outer automorphism of the group of upper triangular unipotent matrices by

conjugating first by a permutation matrix corresponding to the transposition (1, 3),

followed by the transpose-inverse automorphism.

Leaving these three cases aside, there remain:

(1) an elementary abelian 2-group of order 4 in PSL(2, 7) ;

(2) Sym4, Alt4 inside PSL(2, 7) ;

(3) a group of order 21 inside PSL(2, 7) ;

(4) normalizers of Sylow 2-subgroups and 3-subgroups in SL(2, 5).

For the first case one may work inside D
%
. In case (2) property (H2) is not an issue

and as these groups normalize groups occurring in case (1), property (H1) is also

clear. In case (3) we have the normalizer of a Sylow 7-subgroup so property (H1) is

not an issue. Furthermore if P is a Sylow 7-subgroup, since there is an outer

automorphism of G carrying an element of P to a nonconjugate element of P, (H2)

is clear as well.

Finally in case (4) only (H2) is an issue. The groups in question are QnC
$
and

C
$
nC

%
with nontrivial actions. For the first of these, once the claim has been verified

for Q it follows in this case. For the second, one makes an additional computation.

5. Theorem 1(1)

This result can be read off rather tediously from the classification of the finite

simple groups and computations of Schur multipliers, but one may easily give more

elementary proofs, based on the following.

L 9. Let K be a homogeneous finite group whose center has order di�isible by

an odd prime p. Then K has a normal p-complement.

Proof. By homogeneity any element of K of order p belongs to the center. Then

for any p-subgroup P of K, N(P) induces a p-group of automorphisms on P,

by Huppert’s theorem [11, 5.3.10], and hence K has a normal p-complement [11,

7.3.5]. *
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Proof of Theorem 1(1). G is homogeneous, finite, quasisimple, and not simple.

By Lemma 9, Z(G) is a 2-group, and by homogeneity every involution in G is central.

This is the situation considered by Griess in [13] (more generally, for not necessarily

quasisimple groups). In the quasisimple case his result states that G is isomorphic

either to SL(2, q) or AW
(
, the covering group of Alt

(
. This result makes rather heavy use

of the theory of finite simple groups, and we will indicate below how to argue more

directly.

Thus it suffices to check that most of these groups are not homogeneous. For

q& 7 there are elements of SL(2, q) of order q1, corresponding to multiplication

maps in the field &
q
#
, whose characteristic polynomials are distinct. Such elements

are not in the same orbit under Aut(SL(2, q)). In AW
(

there are elements of order 3

which are not conjugate by an automorphism, as their centralizers are of distinct

orders. *

Griess’ result depends in turn on the classification of groups in which all 2-local

subgroups are solvable and two results of Goldschmidt on strongly closed subgroups

of Sylow 2-subgroups, as well as further information. This argument can be

eliminated using homogeneity as follows. We begin with a quasisimple homogeneous

finite group K whose center is a nontrivial 2-group. Let A¯Ω
"
(Z(K )) and fix a Sylow

2-subgroup S of K. By homogeneity and control of fusion, AutS induces GL(A) on

A, and in particular S is a Suzuki 2-group. Hence by [14] either S is generalized

quaternion or S}A is elementary abelian. To get rid of the second case one can either

look more closely at the Suzuki groups or one can examine the simple groups with

elementary abelian subgroups: PSL(2, q) with q a power of 2 or congruent to ³3

modulo 8; Janko’s first group J
"
; and groups of Ree type. However J

"
and groups of

Ree type have trivial Schur multiplier ; in the case of groups of Ree type, the

computation that eliminates the 2-part of the Schur multiplier involves only the

structure of the normalizer of a Sylow 2-subgroup (see [1]).

Thus in the proof of Lemma 1 we need only consider the case in which K}Z(K )

has dihedral Sylow 2-subgroups [12]. Hence K}Z(K ) is isomorphic to Alt
(

or

PSL(2, q) with q& 5 odd, and as Z(K ) is a 2-group, KDAW
(
or SL(2, q) respectively.

Of course [12] is a major result of classification theory; perhaps a more direct

analysis can be used to reduce to SL(2, 5) in this case.

6. Theorem 1(2)

This is the most troublesome point. It can be read off rather tediously from the

classification of the finite simple groups. A more direct approach makes use of the

following fact (which incorporates the classification of groups of 2-rank at most 2 [2]).

F 3 [21, special case of Theorem A]. Let G be a finite simple group of 2-rank

r. Suppose that G has an elementary abelian 2-subgroup E of rank r such that E is

a Sylow 2-subgroup of C(E ), and N
G
(E ) induces GL(E ) on E. Then G is of one of the

following forms:

(1) PSL(2, q) with q& 5 odd; PSL(3, q), PSU(3, q), G
#
(q), or #D

%
(q) with q odd;

(2) Alt(7), M
""

, Co
$
, or F

$
.

Actually [21, Theorem A] does not require E to be a 2-Sylow of C(E ), thereby

allowing the additional case of ON, and covers the more general situation in which
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N
G
(E ) acts transitively on the flags of E, allowing the following additional cases :

PSU(3, 4) ; M
#$

; Mc ; Ly ; J
"
; and groups of Ree type in characteristic 3.

To bring these results to bear on Theorem 1, it suffices to prove the following.

P 4. Let G be a homogeneous finite group with O
#
(G)¯ 1, ha�ing 2-

rank r& 3, and let E be an elementary abelian 2-subgroup E of rank r. Then

N(E )}C(E )DGL(E ) and E is a Sylow 2-subgroup of C(E ).

Then applying Fact 3 we get a relatively short list of possibilities for a

homogeneous quasisimple finite group. We may then eliminate the nonhomogeneous

ones by inspection.

For example, the groups Alt7, PSL(3, q) (q odd), G
#
(q) (q¯ pm, p& 5), #D

%
(q) (q

odd), Co
$
, and F

$
have pairs of elements of orders 3, q®1, 2p, 4, 2, and 3 respectively

which lie in distinct orbits under the automorphism group, as their centralizers are of

distinct orders ; cf. [5, 9, 10, 22]. Similarly in M
""

there are nonconjugate elements of

order 11, and as all automorphisms are inner this is a contradiction [3, 4 ; Table 1] ;

and in G
#
(3m) there are nonconjugate elements of order 3, as well as conjugate pairs

of such elements which generate an elementary abelian subgroup of rank 2, violating

the following.

L 10. If G is a homogeneous finite group containing two conjugate elements

of prime order p which generate an elementary abelian subgroup of order p#, then all

elements of order p are conjugate in G.

The proof is immediate, applying homogeneity to elementary abelian p-subgroups

of rank at most 2.

For the case of PSU(3, q) with q odd we may use the following evident principle.

L 11. Let G be a homogeneous group and H be a subgroup such that for e�ery

automorphism α of G, we ha�e either H α ¯H or H αfH¯ 1. Then H is homogeneous.

Thus if PSU(3, pm) were homogeneous, its Sylow subgroups would be homo-

geneous and hence, for p odd, would be abelian, a contradiction. Note however that

the Sylow 2-subgroup of PSU(3, 4) is in fact the homogeneous group Q*.

We are left with the case of PSL(2, q) for q& 9 odd to consider, which resembles

the case of SL(2, q) mentioned earlier. In this case there are diagonal matrices of order

(q®1)}2, or matrices of order (q1)}2, nonconjugate in Aut(PSL(2, q)). (It suffices

to take whichever of these two numbers is odd.)

Thus to complete our arguments it remains only to prove Proposition 4.

7. Proposition 4

L 12. Let G be a finite homogeneous group.

(1) If O
#
(G)¯ 1 then G has one conjugacy class of in�olutions.

(2) If G has one conjugacy class of in�olutions then the rank of the center of a Sylow

2-subgroup of G is at most 2.

Proof. (1) This follows easily from Glauberman’s Z* theorem and Lemma 10.

We may also argue as follows. In view of Lemma 10, if there are nonconjugate

involutions in G then any commuting pair of involutions are nonconjugate.
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Conversely, it is easy to see that any nonconjugate pair of involutions i, j will

commute; otherwise they will generate a dihedral group D
n

of order 2n with n" 2

even, and then D
n

contains a conjugate pair of commuting involutions. Now let i, j

be commuting involutions and let I, J,K be the conjugacy classes of i, j, and ij

respectively. Then ©Kª%©I, Jª and [©Kª,©I, Jª]¯ 1, so ©Kª is commutative. Thus

©Kª%O
#
(G), a contradiction.

(2) Let S be a Sylow 2-subgroup of G, and V¯Ω
"
(Z(S )). As N(S ) controls fusion

in Z(S ), N(V )}C(V ) is nontrivial, and is normal in GL(V ) by Lemma 2. On the other

hand N(V )}C(V ) has odd order, so this forces the rank of V to be at most 2. *

Proof of Proposition 4. Let G be a homogeneous finite group with O
#
G¯ 1, of

2-rank r& 3, and let E be an elementary abelian 2-subgroup of rank r. Let S be a

2-Sylow subgroup of G. We must prove that

(1) N(E )}C(E )DGL(E ) ;

(2) E is a Sylow 2-subgroup of C(E ).

(1) Let A¯C
S
(E )!S (by Lemma 12). Then E¯Ω

"
(Z(A)) and N

S
(A)"A so

N(E ) acts nontrivially on E and induces a normal subgroup of GL(E ) by Lemma 2.

This proves (1).

(2) Let Q be a Sylow 2-subgroup of C(E ). By the Frattini argument N(E )¯
N(Q)[C(E ). Thus N(Q) induces GL(E ) on E. It follows that Q is homocyclic (cf.

[21, §3]). Let A¯N(Q)}C(Q). We have the following properties :

(i) Q is homocyclic ;

(ii) A is a normal subgroup of Aut(Q) inducing GL(Ω
"
Q) on Ω

"
Q ;

(iii) every element of order 2 in A acts nontrivially on Ω
"
Q.

This forces Q¯Ω
"
Q, that is, Q¯E. *

Thus the main point in the classification of homogeneous finite groups is the

analysis given in [21], which depends on a number of specific identification theorems

as well as some key cohomological information regarding groups of the form

E[GL(E ).

Acknowledgements. We thank J. Thompson for suggesting the use of [21] in

connection with Theorem 1(2).
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