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Introduction

We will refer to a complete graph with a 3-edge coloring as a 3-graph in the
present paper, for lack of a better name; equivalently, a 3-graph is a structure in
a language consisting of three nontrivial symmetric 2-types. A 3-graph is said
to be homogeneous if every isomorphism between finite induced 3-subgraphs
extends to an automorphism of the whole 3-graph. The finite homogeneous
3-graphs are known [7,8], and in fact there is a decent theory of finite homo-
geneous structures for relational languages [5, 10] which provides a very rough
classification in general. The present paper classifies the infinite imprimitive ho-
mogeneous 3-graphs, as part of an ongoing project to explore the ramifications
of a combinatorial method due primarily to Lachlan. There is no systematic
theory of infinite homogeneous structures, even for binary languages. It is not
clear whether the infinite homogeneous 3-graphs are classifiable. The classifi-
cation of the infinite homogeneous directed graphs is known, and the case of
3-graphs appears harder but in some ways similar.

We expect that an attempt to apply Lachlan’s method to the classification of
all infinite homogeneous 3-graphs will either lead to a considerable development
of that method, or to some completely unfamiliar phenomena. The case treated
here is one of the obvious special cases that needs to be dealt with first. The
classification of imprimitive homogeneous directed graphs was dealt with in a
similar spirit in [1].

In §1 we will present a catalog of the examples found with a brief discus-
sion of their properties. With one exception, the five families listed are analogs
of imprimitive directed graphs; the exceptional family is the class of product
3-graphs. Homogeneous product structures exist quite generally but are not
encountered in the context of directed graphs, as the type structure is too lim-
ited. We will see that the first three families in our catalog are rather special
in character, while the last two families are of more or less generic type. The
bulk of the analysis is directed toward identification theorems for the structures
lying in these last two families. In particular the fifth and last family has only
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two members, each of which needs its own identification theorem. As a result,
about a third of our analysis will be devoted to these two structures.

The paper is organized as follows. In §1 we describe our five families of
infinite imprimitive homogeneous 3-graphs, which we refer to as: composite 3-
graphs; product 3-graphs; double covers; restricted generic; and generic type.
The first four families contain infinitely many examples, while the last fam-
ily consists of just two examples. In §2 we establish some useful preliminary
results which hold uniformly for homogeneous 3-graphs not lying in the first
three families. In §§3-4 we carry out the classification of the restricted generic
homogeneous 3-graphs, which includes all those which have only finitely many
equivalence classes. §5 contains the characterization of the semigeneric 3-graph,
and §6 contains the characterization of the generic imprimitive 3-graph. A ver-
sion of Lachlan’s method is used at the end of §4 and in §6. The other cases are
handled by ad hoc methods.

We assume a considerable degree of familiarity with the methods presently
in use, including the use of Fraissé’s theory of amalgamation classes, and our
discussion of Lachlan’s method is rather brief as this has been developed more
fully on a number of other occasions, for example in [1-3,9]. We move back
and forth rather often between homogeneous structures and the corresponding
amalgamation classes, especially toward the end of the paper.

Quite a few elementary consequences of homogeneity in the category of 3-
graphs will be used without explicit mention, such as transitivity of the au-
tomorphism group, and homogeneity of the structure induced on the set of
realizations of some 1-type over a finite set. Later sections of the paper make
fairly explicit use of the classification results of earlier sections; the operation
of restriction to a 1-type may produce a structure of the type considered in an
earlier section, or a new structure of the type under consideration in a given
section. In fact, a similar consideration is one of the main reasons for wishing
to have the classification given here, prior to launching into the analysis of the
primitive case.

The following notation will be used throughout. The three edge relations
are denoted R1, R2, R3. We usually write “tp(ab) = i” rather than “Ri(a, b)”,
and we read this: “The edge (ab) has type (or color) i.”; or in a more model-
theoretic vein: “The pair (a, b) has 2-type i.” Note that a pair a, b with a = b
also has a 2-type, referred to as the trivial 2-type.

The relation E denotes some nontrivial equivalence relation on an imprim-
itive homogeneous 3-graph H , which after some brief preliminary analysis will
always be taken to be the relation defined by: R1(x, y) or x = y. The re-
quirement that the relation so defined is in fact an equivalence relation may be
expressed as follows: there are no triangles with exactly two sides of type 1.
Once this normalization of E is made, our argument will take place inside the
category of 3-graphs satisfying this constraint, and it will generally be tacitly
assumed to apply to all 3-graphs under consideration. Occasionally this require-
ment will be mentioned specifically, frequently in the following considerably less
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precise manner: “The type 1 defines an equivalence relation.”
Amalgamation classes are always assumed to be classes of finite 3-graphs,

and this requirement is also noted specifically on occasion. Types may be
thought of as isomorphism types, but this terminology will be used with the
usual degree of flexibility occurring in model theory. If A is a finite subset of a
3-graph H and p is a 1-type over A, then Ap denotes the set of realizations of
p in H . When A = {a} is a singleton and p = i ∈ {1, 2, 3}, the notation ai is
used for this set.

We note that the term “3-graph” is more commonly used in another way, to
refer to 3-regular hypergraphs, and in particular the article [12] refers to that
context. As there is no efficient general terminology for categories of combina-
torial structures of general type, we have expropriated that term for our present
use.

We are grateful to the referee for an attentive reading of the paper, which
has led to the insertion of a little more connective tissue in the body of the text.
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1 A catalog

We present the five types of infinite imprimitive homogeneous 3-graphs in detail,
under the following headings:

I. Composites
II. Products
III. A Double Cover
IV. Restricted generic
V. Generic type

Within each category, after describing the graphs in what we consider to
be the most natural terms, we will highlight the characteristic features of the
graphs involved in terms which are more useful for their identification in the
course of the proof of the classification theorem. The proof that this catalog
does indeed give a full classification of the imprimitive homogeneous 3-graphs
will occupy the remaining sections of the paper.

I. Composites K[G] and G[K]
The operation of composition, also called the wreath product, and denoted

A[B], takes as input two structures A and B and produces a third whose un-
derlying set is the cartesian product A × B and whose automorphism group
is Aut (B) ≀ Aut (A). The structure is thought of as the result of replacing
each point of A by a copy of the structure B, while using the structure of A
to determine the relations between points lying in distinct copies of B. This
is particularly transparent when A and B are binary homogeneous structures
with k and l nontrivial 2-types. Then A[B] is binary homogeneous with k + l
nontrivial 2-types and its language may be thought of as the disjoint union of
the languages of the component structures. The cases relevant to 3-graphsare:
k = 1, l = 2 or k = 2, l = 1 in which case we are dealing with the composition
in some order of a complete graph K with an ordinary graph G, denoted K[G]
or G[K] as the case may be. In a more explicit notation we would write:

Ki
m[Gj,k] or Gi,j [Kk

m]

where the superscript lists the labels of the nontrivial 2-types and the subscript
indicates the order of the complete graph. Here, according to our conventions
for 3-graphs, we will take {i, j, k} = {1, 2, 3}. To make all of this completely
explicit it suffices to consult the list of homogeneous graphs, which in any case
will be presented in connection with family III, as the analysis in that case
involves some consideration of individual examples.

In the structures K[G] the nontrivial definable equivalence relation is the
union of two nontrivial 2-types, together with equality, while in G[K] it involves
one nontrivial 2-type. These examples are characterized by the property that:
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(∗) the 3-graph under consideration carries a nontrivial definable equivalence
relation which is a congruence,

or in other words: the type of a pair of points lying in two distinct classes is
determined by the two classes involved. It is clear that if such a 3-graph is
homogeneous then it is composite (all of the classes are isomorphic) and the
two factors are themselves homogeneous.

We will soon be interested exclusively in the case in which the relation E
given by the union of one of the relations Ri and the equality relation is an
equivalence relation on our 3-graph H . In this case the condition that E is a
congruence can be formulated as follows:

(∗) the 3-graph contains no triangle whose edges are of three distinct types.

When we pass from the homogeneous 3-graphH to the associated amalgamation
class we will find it convenient to work with such characterizations.

II. Products K ×K
The product A×B of two structures is again given set theoretically by the

cartesian product, but the automorphism group is AutA×AutB. The type of
a pair of elements of A × B can be thought of as a pair: the type of the pair
of first coordinates in A, and the type of the pair of second coordinates in B.
Accordingly if A and B have k and l nontrivial 2-types respectively, A×B has
(k + 1) · (l+ 1)− 1 nontrivial 2-types. The first nontrivial case, k = l = 1, with
symmetric types, consists of products Km ×Kn of complete graphs, viewed as
3-graphs.

The characteristic feature of these examples is that:

(∗) the 3-graph under consideration carries two nontrivial definable equivalence
relations which are transversal in the sense that any two classes meet in
one point.

It is easy to see that in a homogeneous 3-graph with this property each equiva-
lence relation must be defined by a single nontrivial 2-type, the classes for either
relation are then complete graphs of constant size, and the whole structure is
the product of these two complete graphs.

III. The double cover Γ̂∞

The third construction is less well-behaved: it does not always give rise to
homogeneous structures, and in fact produces only one infinite example, up to a
permutation of the language. However the same or a very similar construction is
important in other contexts, such as imprimitive homogeneous directed graphs
or finite homogeneous 3-graphs, and we will give a fairly systematic discussion
of it in the present setting. Let G be any graph, and for definiteness let us
label the edge and nonedge types in G as types 1 and 2 respectively, and let us
also momentarily consider equality as type 0. We define an associated graph Ĝ
by first extending G by one more vertex ∗, adacent to each vertex of G, and
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then forming the double cover Ĝ = G∗ × {0, 1}, a sort of twisted composite, so
that G∗ × {0} and G∗ × {1} are copies of G∗, while the type structure between
these two copies of G∗ is essentially the complement of the structure in G∗:
tp((x, 0), (y, 1)) = 3− tp(x, y).

This behaves somewhat like a double cover of G in two related senses: first,
the involution interchanging (x, 0) and (x, 1) is a central involution of Aut (Ĝ),
and the quotient is an extension of AutG; second, over the point (∗, 0), the
structure Ĝ is equivalent to the structure given by two copies of G with a
definable isomorphism between them – the point (∗, 1) can be neglected as it is
definable from (∗, 0). The characteristic features of this family are that

(∗) the equivalence classes are of order 2; and the equivalence relation is not a
congruence.

The double cover of a complete graph can also be viewed as a product.
It is fairly easy to see that a homogeneous 3-graph H in which one of the

types defines an equivalence relation with classes of order 2, which is not a
congruence, is the double cover Ĝ associated to some graph G, and that the
graph G itself must be homogeneous. The main point is this: since some pair
of equivalence classes realizes both available cross types, by homogeneity the
same applies to any pair of distinct equivalence classes. Now to recognize H as
Ĝ it suffices to consider the structure of H over any one of its points. By the
same token, the graph G must be homogeneous. The only point which requires
attention is the identification of the homogeneous graphs G for which the 3-
graph Ĝ is again homogeneous. Certainly Ĝ becomes homogeneous when the
point (∗, 0) is fixed; so by general principles, homogeneity of Ĝ is equivalent to
the following conditions:

G is homogeneous;

Aut Ĝ is transitive on Ĝ.

Now we analyze the content of this last condition. For x ∈ G we will write Γ(x)
for the set of neighbors of x in G, and ∆(x) for the set G−(Γ(x)∪{x}). We write
Gx for the graph obtained fromG by converting edges and nonedges linking Γ(x)
and ∆(x) into nonedges and edges respectively. The point of this construction
is that for x ∈ G, the set of neighbors of (x, 0) in Ĝ has the structure of Gx,
with (∗, 0) replacing (x, 0) and ∆(x)× {1} replacing ∆(x)× {0}. From this we
find:

Lemma 1 Let G be a graph. The following are equivalent:

1. Aut Ĝ is transitive on Ĝ.

2. For x ∈ G, Gx ≃ G.

We are interested in this condition when G is homogeneous, and hence has
a transitive automorphism group; so it suffices to examine Gx for any single
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x ∈ G. To work out the content of condition (2) in a more explicit form it
seems to be necessary to know the homogeneous graphs explicitly. They are as
follows up to complementation (which is simply a relabeling of types, and is of
no significance here):
1. The pentagon C5 and the line graph E3,3 associated with the complete
balanced bipartite graph K3,3. This has nine vertices corresponding to the
edges of K3,3, with two of these vertices linked if the corresponding edges have
a common vertex.
2. m ·Kn which is Km[Kn] viewed as a graph.
3. Γn generic omitting Kn. Here n ≥ 3 as otherwise this graph falls under
group (2).
4. Γ∞ generic, which is isomorphic to Rado’s graph, also called the random
graph.

Here we have included the finite examples (the two graphs listed under (1)
and the graphs in (2) with m,n < ∞). By inspection the graphs in groups (1, 4)
satisfy our criterion. The graphs G = m · Kn for m,n > 1 are disconnected,
but have connected transforms Gx. For m or n equal to 1 in group (2) the
graph G or its complement is complete, and satisfies our condition since Gx =
G, but the corresponding example is a product, as we have noted. In group
(3) our condition fails since 2 · Kn−1 embeds in Γn and the transform of this
graph contains K2n−3, whereas 2n − 3 ≥ n. The 3-graphs associated with
the two examples in group (1) are known from the classification of the finite
homogeneous 3-graphs, and the example associated with Γ∞ is the only one
relevant here.

IV. Restricted generic 3-graphs Γi,j
m,n

The last two families involve graphs with a less straightforward structure
which are best presented in terms of amalgamation classes. We define amalga-
mation classes Ai,j

m,n for distinct types i, j ∈ {1, 2, 3} and for parameters m,n
satisfying:

m < ∞; m ≤ n+ 1 ≤ ∞

The class Ai,j
m,n consists of all finite 3-graphs on which the type i defines an

equivalence relation with at most n classes (which is no restriction if n = ∞)
and which does not embed Kj

m (which is no restriction if m = n + 1). This
is easily seen to be an amalgamation class, if one bears in mind that the only
amalgamation problems which need to be considered are those which require
amalgamation of two one-point extensions Aa, Ab of a common substructure A,
for which it is sufficient to determine tp(a, b), which we do by taking tp(a, b) = i
if possible and tp(a, b) 6= i, j otherwise. This construction never increases the
number of equivalence classes and never involves the type j.

The amalgamation class Ai,j
m,n corresponds to a unique countable homoge-

neous 3-graph which we call Γi,j
m,n. The characteristic features of these examples

are that:
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(∗) the equivalence relation is defined by a single type i; the 3-graph omits some
Kj

m with m finite; and it is not of types I-III.

It is not at all clear a priori that these conditions force a homogeneous 3-graph
to have the precise form exhibited here, and this will be one of the main things
that we need to prove.

V. Generic type: Γi
∞

and ∞∗Ki
∞

Finally we consider homogeneous 3-graphs in which

(∗) the type i defines an equivalence relation, not of the first three special types,
and embedding Kj

n for all n and all types j 6= i.

We will find two examples. One is the completely generic 3-graph relative to
the basic constraint that type i defines an equivalence relation. We denote this
Γi
∞

where the subscript is intended to suggest the genericity. The other, which
we call the semigeneric example, denoted ∞∗Ki

∞
, is subject to a constraint we

call the parity constraint (relative to the type i) which reads as follows, writing
E for the equivalence relation given by the union of the type i and the equality
relation:

Between any two E-equivalent pairs, there are an even number
of edges of each type

In terms of substructures, this means that:

(∗) the 3-graph under consideration omits two specific 3-subgraphs of order 4,
in which one cross-type occurs 3 times, and the other once.

It is of course necessary to check that one can amalgamate finite 3-graphs satis-
fying the parity constraint, and again one considers amalgamations of one-point
extensions Aa and Ab over A. There is no difficuly unless a and b are equivalent
to elements a′ and b′ in A which lie in distinct E-classes, and in this case the
type of ab is uniquely determined by the parity constraint. One must check that
another choice of a′ and b′ cannot lead to a contradictory determination of the
type, which amounts to the addition law for parity.

This concludes our presentation of the examples. The structure of our analy-
sis follows the structure of this catalog, though as we have sufficiently indicated
the necessary verifications of the classification in the first three families as the
examples were presented, we will assume throughout that we are not dealing
with 3-graphs of those three types. Accordingly, in the next section we will
derive a few general properties of imprimitive homogeneous 3-graphs not in
families I-III, and then turn in following sections to the detailed analysis of
families IV and V.
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2 Preliminaries

H is an infinite imprimitive homogeneous 3-graph and E is a nontrivial definable
equivalence relation on H . By homogeneity, the relation E is the union of one or
two nontrivial 2-types with the equality relation. If E involves two nontrivial 2-
types then as there is only one remaining 2-type it follows that E is a congruence
and H is composite of type K[G]. Therefore we may assume throughout:

E involves only one nontrivial 2-type, which we designate as type 1.

As mentioned in the introduction, this requirement applies to all 3-graphs from
this point on.

We will take as a second standing hypothesis throughout that:

H does not belong to families I − III.

At a later stage we will consider certain homogeneous 3-subgraphs derived from
H and our standing hypothesis will not always be inherited in such cases, but
as we already know these exceptional homogeneous 3-graphs explicitly this will
not present any notable difficulties. The present section contains three generally
useful lemmas relating to this situation; the last of these lemmas will allow
inductive arguments to run smoothly.

Lemma 2 If C is an E-class in H and x ∈ H −C then for any type i 6= 1, the
set xi ∩ C is infinite.

Proof :
Let K = |C| ≤ ∞. If for some choice of x, C, and i the set xi ∩C is empty

it follows easily that E is a congruence and H is composite, a contradiction.
Suppose now that |xi ∩ C| = k with 1 ≤ k < K. Replacing i if necessary by
another type, we may suppose 2 · k ≤ K. Then |xi ∩C| = k for any choice of x,
C with x /∈ C.

Fix two E-classes C1 and C2. If xi ∩ C2 = yi ∩ C2 for all x, y ∈ C1 then
for z ∈ C2 we find zi ∩ C1 = ∅ or C1, a contradiction. Suppose next that for
x, y ∈ C1 we have xi ∩ C2, y

i ∩ C2 always equal or disjoint. Pick x and y in
C1 so that these sets are disjoint. As C2 − xi is indiscernible over x, this set is
indiscernible over C1, and every k-subset of C2 − xi must occur as zi ∩ C2 for
some z ∈ C1. It follows that any two k-subsets of C2 − xi are equal or disjoint,
and hence either k = |C2 − xi| or k = 1.

If k = 1 and K = 2 then H = Ĝ for some G, a contradiction. If k = 1 and
K > 2 then we claim that H is a product. If this fails, then we have a triple
x, y, z of inequivalent points with tp(xz) = tp(yz) = i 6= tp(xy) and hence there
is a z-definable bijection of x/E − {x} with y/E − {y} given by composing the
bijections x/E ↔ z/E ↔ y/E defined by the type i, and this bijection is given
by some type i′. But then it follows easily that for x /∈ C, |xi′ ∩ C| = 1, and
this forces K = 2.
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We now know that there are x, y ∈ C1 with xi ∩ C2 and yi ∩ C2 distinct
but not disjoint. In particular k > 1. Let X1 = xi ∩ C2 and X2 = C2 − xi,
and set kl = |yi ∩ Xl| for l = 1, 2. The sets X1, X2 are mutually indiscernible
over x and hence over C1, and it follows that any k-set which meets X1, X2 in
sets of size k1 and k2 respectively will occur as zi ∩ C2 for some z ∈ C1. Since
k1 < k there are k-sets of this type meeting yi ∩ C2 in k − 1 points. Thus we
may take k1 = k − 1 and we conclude that any k-set in C2 meeting xi ∩ C2

in k − 1 elements is again of the form yi ∩ C2 for some y ∈ C1. By repeated
application of this principle, all k-subsets of C2 are of this form. In particular
C2 realizes only one k-type over C1, and similarly C1 realizes only one k-type
over C2. As k ≥ 2, we find that |xi ∩ yi ∩ C2| is independent of the choice of
distinct x, y ∈ C1. However this can be any number in the range 0, . . . , k − 1
and hence k = 1, a contradiction.

Notice that conversely Lemma 2 implies our initial hypothesis: H is not
composite, a product, or a double cover.

Lemma 3 Let I be a finite subset of an E-class C1 of H, and p a 1-type over
I realized in a second E-class C2. Then Ip ∩ C2 is infinite.

Proof :
We suppose that I is a minimal counterexample and we fix I◦ ⊆ I with

|I − Io| = 1. Let po = p ↾ Io. Then Ipo ∩ C2 is infinite and Ip ∩ C2 is finite.
By the previous lemma Io is nonempty. Let k = |Ip ∩ C2|. As Ipo ∩ C2 is
indiscernible over Io, any k-subset will occur as I ′

p ∩C2 for some I ′ = Io ∪ {a}
with a ∈ C1. As in the previous proof it follows that k = 1.

Thus over Io and the class C2 we have a definable map from C1 − Io onto
Ipo

o ∩ C2. We claim that this map is 1-1. If not, then we have a nontrivial
equivalence relation on C1− Io definable from any parameter in C2. This would
mean that any two elements of C2 impose the same partition into two sets on
C1 − Io, and hence C2 realizes only finitely many types over C1. Thus C2 has
a nontrivial equivalence relation definable from any parameter in C1, and this
means that any element of C1 imposes the same partition into two sets on C2.
But then the nonempty set Ip∩C2 must coincide with a set of the form xi∩C2,
which is infinite.

We have a bijection of C1 − Io with Ipo

o ∩C2 which is definable from Io and
any parameter in C2. Accordingly it must be defined by a 2-type i. Then for
x ∈ C2, |xi ∩ C1| ≤ |Io|+ 1, contradicting the previous lemma.

We note that in the notation of the previous lemma every 1-type p over I is
indeed realized in H , but not necessarily in every equivalence class, as we see in
the case of the semigeneric 3-graph.

The next lemma has a fairly long proof, with quite explicit amalgamation
arguments used to deal with the composite case.

Lemma 4 Assume that i is the type 2 or 3 and that Ki
3 embeds in H. Then

for x ∈ H the 3-graph xi is not a composition, product, or double cover.
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Proof :
1. By Lemma 2 the E-classes of xi are infinite and hence xi is not a double

cover.
2. Suppose that xi is a product. Then there is a type j which defines a

bijection between xi ∩ C1 and xi ∩ C2 for C1, C2 E-classes not containing x.
We show first:

(1)
Any two elements of C1 − xi realize
the same 1-type over the pair (x, {C2}).

Given elements y1, y2 ∈ C1 − xi, we want elements z1, z2 realizing the same
type over xy1 and xy2 respectively. For this it suffices to find one element
y ∈ C1 − xi realizing both possible types over xi ∩C2, or over C2 − xi. If this is
not possible then each element y ∈ C1 − xi realizes one type over xi ∩ C2, and
the other type over C2 − xi. In particular there will be distinct elements of C1

which realize the same type over C2. There are also elements of C1 which do not
realize the same type over C2, so the relationship of having the same type over
C2 is a nontrivial {C2}-definable equivalence relation on C1. In particular it is
definable from any parameter y ∈ C2 and hence coincides with the partition of
C1 into 1-types over any such y. However as xi is a product, not all elements
of C2 give rise to the same partition of C1. This proves (1).

Now for y ∈ C1−xi we consider the set yj∩(xi∩C2), which is definable from
(x, y, {C2}). By (1) this is always nonempty. This set corresponds bijectively to
a subset of xi ∩C1. On the other hand we claim that xi ∩ C1 realizes only one
type over (x, y, {C2}), since for any elements y1, y2 ∈ xi∩C1 and any type k for
which yk∩xi∩C2 is infinite, there is z ∈ yk∩xi∩C2 with tp(zy1) = tp(zy2) 6= j.
It follows that yj ∩ xi ∩ C2 corresponds bijectively to all of xi ∩C1, or in other
words that xi ∩C2 ⊆ yj for y ∈ C1 − xi, with a similar statement holding when
C1, C2 are interchanged.

Fix y1, y2, y3 ∈ C2 with y1, y2 ∈ xi, y3 /∈ xi. Take z ∈ yj2 ∩ (xi ∩ C1).
Then zy1y2 ≃ zy1y3, so y1y2 and y1y3 have the same type over {C1}. Take
z′ ∈ xi ∩C1 − (yj1 ∪ yj2). Then tp(z′y1) = tp(z′y2) 6= j and thus there is z′′ ∈ C1

with tp(z′′y1) = tp(z′′y3) 6= j. But if tp(z′′y1) 6= j then z′′ ∈ xi while if
tp(z′′y3) 6= j then z′′ /∈ xi, a contradiction.

3. We show that xi is not composite. We represent type i by a nonedge
and the third type (type 5 − i) by an edge. Our claim is that H embeds the
configuration:

(∗) q q q

q

where the box represents an E-class. We will use explicit amalgamation argu-
ments.

The desired configuration (∗) is forced by the amalgamation:
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q q qd

q

qd

in which the circled vertices are those whose 2-type is to be determined in
making the amalgam. The factors of this amalgamation are:

(1) q q q

q
(2) q q q q

So it suffices to show that H contains copies of (1) and (2), or (∗); to do so, we
will have to bring in another amalgamation problem below.

We get (1) or (∗) by the following amalgamation:

qd qd q

q q

with the factors:

(3) q

q

q

q
(4) q q q

q

If (4) does not embed in H we succeed with

q qd qd

q

For (3) we use

qd qd q

q

If this fails, then it yields (1) or (∗).
So we may suppose that we have (1) in H . A second attempt at (∗) is given

by the following amalgamation problem:

qd q

q

qd

q

q

The factors are:

(5) q q q

q q
(6) q

q

q

q

q
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(6) is obtained from (1) using

qd

qd

q

q

q

For (5) we use

qd qd

q

q

q

with factors

(7) q

q

q

q

and (8) q q q q

Here (7) is contained in (6).
At this point either (2) or (8) would be sufficient to force (∗) by amalgama-

tion; in other words, our supposed composition xi must not contain either of
the following:

(2′) q q q (8′) q q q

This forces xi to be complete of type i or i′ where {i, i′} = {2, 3}. As H
embeds Ki

3 by hypothesis, xi omits Ki′

2 . Thus if tp(xy) = i then for C ∈
H/E − (x/E, y/E) we have xi ∩ C ⊆ yi ∩ C, hence xi ∩ C = yi ∩ C, and x
and y have the same type over H − (x/E ∪ y/E). If follows easily that E is a
congruence, a contradiction.

After these preliminaries we divide the rest of the analysis into two major
parts. We deal first with the restricted case in which some Ki

m is omitted. This
of course includes all cases in which H/E is finite. After this we will be left
with the analysis of the two cases of generic type, with or without the parity
constraint, leading in each case to a unique example.
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3 The restricted case: preparation

We have assumed that H carries an equivalence relation E which is the union
of type 1 and the trivial 2-type. We now assume that H is restricted, and
specifically: H omits some K2

m or K3
m with m finite. We take m minimal,

and we may assume without loss of generality that H omits K2
m. We set n =

|H/E| ≤ ∞. It is convenient to formulate our hypothesis as follows:

(∗) H omits K2
m, and embeds K2

m−1; if m = n+ 1 then H embeds K3
n

Thus m − 1 ≤ n. There are some variations in the analysis according as
n is finite or infinite, and for n finite the cases m ≤ n, m = n + 1 should be
distinguished. The hypothesis according to whichH is not composite, a product,
or a double cover remains in effect, and accordingly Lemmas 2-4 apply. The
result is then that H is generic for the data (m,n) in the sense described in
the discussion of family IV in §1. The proof of this claim goes by induction on
n for n finite, followed by the treatment of the case n = ∞. In checking the
applicability of the induction hypothesis, one should make use of the formulation
exactly as given in (∗). For a fixed value of n the proof proceeds by induction
on m. For n = 2 our claim follows easily from Lemmas 2 and 3.

In this and the next section we work with a fixed value of m and n, under
the inductive hypothesis that the classification of restricted graphs has been
achieved for pairs (n′,m′) preceding the pair (n,m) lexicographically. It is
convenient to use the notation n − 1 systematically, with the convention that
n− 1 = n for n = ∞. We confine ourselves in this section to relatively general
aspects of the analysis, which will be applied in the following section.

Lemma 5 Assume m ≤ n. Then for x ∈ H, x2 is generic omitting K2
m−1,

with n− 1 classes.

Proof :
That x2 has n−1 classes follows from Lemma 2. By Lemma 4 and induction

the claim follows.

Lemma 6 Let x ∈ H.

1. If m ≤ n then x3 embeds K2
m−1.

2. If m ≤ n < ∞ then x3 is generic omitting K2
m, on n− 1 classes.

Proof :
By Lemma 2 x3 meets each E-class of H − (x/E), and by Lemma 4 x3 is

not a composition, product, or double cover. So given (1), induction yields (2).
For the proof of (1), if m = 3 our claim follows from Lemma 4. Assume now

that m > 3.

14



We will use amalgamations to embed I1 +
3 K2

m−1 in H , where I1 denotes a
single vertex and +3 is the operation of disjoint sum, with connecting edges of
type 3.

We begin with the configurations aA ≃ I1 +
3K2

m−3 and B ≃ K2
m−2, and we

adjoin elements c1, c2 with:

tp(c1/A), tp(c2/AB) ≡ 2
tp(c1/B), tp(a/c1c2) ≡ 3

We pair the elements of aA and B and we put each pair in a single E-class.
The types in A∪B which are not yet determined are set equal to 3. The types
tp(a/B) and tp(c1c2) are not yet determined.

Our idea is to amalgamate aABc1 with aABc2 over aAB. If we assume
these factors are present in H , and that the result of the amalgamation assigns
to the pair c1, c2 the type 2 or 3, then we will have, respectively, a +3 c1c2A
or c1 +3 c2B as the desired copy of x +3 K2

m−1. So our problem is to ensure
tp(c1c2) ∈ {2, 3}.

Although it is clear that c1, c2 remain distinct, it is not clear that they
remain inequivalent. The first problem is to prevent this, and this then raises
(or aggravates) a second problem, which is to find suitable factors inside H .
To dispose of the first problem we adjoin an element c′1 with tp(c1c

′

1) = 1,
tp(c′1c2) = 2, tp(c′1/AB) = 3, and we amalgamate aABc′1c1 with aABc′1c2 over
aABc′1. The problem now is to embed aABc′1ci in H for i = 1, 2.

The element a is paired with some b ∈ B. We will form aABc1c2 by amal-
gamating aAbc′1c2 and ABc′1c2 over Abc′1c2. These two factors are found in H
by the previous lemma since the first one omits K2

m−1 and the second one has
the form c2 +

2 ABc′1 where ABc′1 omits K2
m−1.

This produces a suitable version of aABc′1c2 and determines the structure
of the factor aABc′1c1, which also omits K2

m−1 as m > 3: no copy of K2
m−1 can

contain c′1 or c1 and the remaining elements occupy m− 2 distinct E-classes.
After this, we can carry out the amalgamation of ac1c

′

1AB and ac′1c2AB
over ac′1AB as indicated at the outset.

Lemma 7 If n < ∞ and H embeds both K2
n and K3

n then x2 and x3 are generic
on n− 1 E-classes.

Proof :
By induction on n it suffices to show for example that x3 embeds both K2

n−1

and K3
n−1; the latter is trivial.

Suppose on the contrary that k ≤ n is minimal such that x3 omits K2
m.

Then by induction and Lemma 4 x3 is generic on n− 1 classes, omitting K2
k. In

particular for y ∈ x3 it follows that y2 ∩ x3 embeds K3
n−2 and hence x2 embeds

K3
n−2. Thus x2 can be identified, by induction, as the homogeneous graph on

n − 1 classes, either omitting K3
n−1, or embedding K3

n−1 and omitting K3
n. In

any case the contruction used in the previous Lemma again works.
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The next lemma is noteworthy in that it is false for the semigeneric graph,
and hence relies essentially on the hypothesis that H is restricted.

Lemma 8 For H restricted, any finite 3-graph with two classes embeds in H.

Proof :
By making use of amalgamations whose solutions are uniquely determined

(as E is an equivalence relation) we can reduce the problem to the following two
cases:

(1) One E-class C1 is indiscernible over the other E-class C2.

(2) Both E-classes contain at most 2 elements.

In case (2) we may suppose that both E-classes do contain two elements,
and that each pair realizes two distinct types over the other pair. Using Lemma
5 we reduce by induction to the case in which H omits K2

3 . It is easy to see
that every 1-type over a pair of equivalent points is realized in H , but we need
to show something stronger: if the equivalent pair x, y ∈ H is fixed, then we
claim that

(2′) Each 1-type over xy is realized in every class of H − (x/E).

Then Lemma 2 implies (2).
If n = 2 then (2′) is evident. Assume n > 2. Fix a ∈ H and consider a2,

which omits K2
2 , has infinite E-classes, and meets every E-class of H − (a/E).

In particular if we take x, y ∈ a2 equivalent, then any E-class of H−(x/E, a/E)
is represented by some element b ∈ a2, and tp(b/xy) = 3. In particular any two
E-classes in H − (a/E, x/E) are conjugate by an automorphism which fixes a,
x, and y.

If the type of a over x, y (i.e., ≡ 2) is realized in two distinct E-classes, then
any two classes of H − x/E are conjugate over x, y, since for n = 3 these two
realizations are conjugate over x, y, and for n > 3 the elements b found in the
previous paragraph can be used. So (2′) follows in this case. There remains the
possibility that this type is realized in a unique class of H . In this case there
will be disjoint pairs (x1, y1) and (x2, y2) for which this E-class is the same,
and there will be other such disjoint pairs for which the corresponding E-classes
are different. This means that each E-class of H carries a nontrivial 4-place
relation, which is impossible.
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4 The restricted case: conclusion

After these preliminaries we can carry out the analysis of the restricted case.
The notation of the previous section is retained. In particular m,n are defined
with m ≤ n+ 1 ≤ ∞ and m < ∞, and

(∗) H omits K2
m, and embeds K2

m−1; if m = n+ 1 then H embeds K3
n

We dispose first of the case in which n is finite.

Lemma 9 If n < ∞ then H is generic with n classes, omitting K2
m.

Proof :
We have to embed every finite 3-graph on n classes, omitting K2

m, into H .
We first reduce to the case in which n− 1 of the classes are singletons and the
remaining class is indiscernible over these n− 1 points.

So let G be any finite 3-graph with n classes, omitting K2
m, and let C be one

particular E-class of G. Adding points to C if necessary we may suppose that
any two points of G − C realize distinct types over C. We may also suppose
that G actually has n distinct classes. We may suppose that all the classes in
G − C are singletons, since for any class C1 6= C, G is the unique amalgam of
the various 3-graphs obtained by replacing C1 by any one of its points. Finally
we may replace C successively by its various indiscernible subsets defined over
G− C.

Now suppose that G has n − 1 singleton classes and an indiscernible class
C (which may also be a singleton). Let x ∈ G − C. If x realizes only one type
over G − {x} then G embeds in H by Lemmas 5-7 and induction. Now let
tp(x/C) = i, i′ = 5− i, and suppose that tp(xy) = i′ for some y ∈ G−{x}. We
will give an explicit amalgamation forcing G into H .

Let Go be a copy of G−(C∪{x}) and for c ∈ C let Gc be a copy of G−{x, y}.
Let

G∗ = Go ∪
⋃

c∈C

Gc,

organized so that G∗ occupies only n − 2 E-classes, and let all types which
are not otherwise fixed be taken to be 3. Adjoin an auxiliary element c′ to C.
We intend to perform an amalgamation of G∗c′x with G∗c′C over G∗c′, with
the following idea: if tp(x/C) ≡ i then xCGo ≃ G, while if tp(xc) = i′ with
c ∈ C, then xcGc ≃ G. This requirement determines tp(x/G∗), tp(c/Gc), and
tp(c/Go) but leaves tp(c′/G∗x) undetermined. We will take tp(c′/G∗x) ∼= 3.
Then G∗x embeds in a3 for a ∈ H . As G∗c′C has only n− 1 classes and omits
K2

m−1, it also embeds in H .
When H/E is infinite the analysis is less direct. We begin with a slight

extension of Lemma 8.

Lemma 10 If n = ∞ then every finite 3-graph G with 3 classes, omitting K2
m,

in which at least one class is a singleton, embeds in H.
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Proof :
Write G = Go ∪ {x} with x a singleton E-class of G. We may suppose

that each equivalence class C of Go is either indiscernible over G − C or has
two elements, as G can be obtained as the unique solution to an amalgamation
problem involving structures of this type. If x realizes only one type over Go

then Lemmas 5,6,8 apply unless m = 3 and x realizes type 2 over Go, in which
case our claim is trivial. So we will assume that x realizes types 2 and 3 over
Go.

We deal first with the following case:

x realizes only one type over each equivalence class of Go.

Write Go = C2 ∪ C3 where tp(x/Ci) ∼= i. We perform the following amalgama-
tion. Let I be an E-class with k1 + k2 − 1 elements. For J ⊆ I of order ki, let
Di,J be a copy of Go − Ci and let D be the union of all Di,J , for i = 2, 3 and
|J | = ki, viewed as a single E-class. Adjoin another element c to the class I.
We now describe the structure of D ∪ Ic. Here D and Ic are distinct E-classes
and:

tp(c/D) ∼= 3
(J,Di,J) ≃ (Ci, Go − Ci) for suitable i, J

Our plan is to amalgamate DIc with Dxc over Dc where:

tp(xc) = 3
tp(x/Di,J) = tp(x/Go − Ci)

Now xcD embeds in H since xD emebeds in c3 and cID embeds in H . After
amalgamating there will be some i = 2 or 3 and some J ⊆ I of order ki so that
tp(x/J) ∼= i. Then xJDi,J ≃ G.

Now we suppose that

There is an equivalence class C of Go of order 2
over which x realizes types 2 and 3.

Let C = {c2, c3} with tp(x/ci) = i. Let D = Go −C which we take to be either
indiscernible over x or of order 2, realizing two distinct types over x.

We adjoin an element to C with tp(xc) = 3, and with tp(c/D) determined by
the amalgamation of xcc2 with xcD over xc. Then the amalgamation of xcc2D
and xcc3D over xcD will force G into H . We still have to deal with the factor
xcc3D, but the effect of this is to change the class C into an indiscernble set
over x. If D is indiscernible over x we are in a case treated above, and otherwise
|D| = 2 and we repeat the argument to replace D by an indiscernible set over
x, of order 2.

Now we arrive at the main point in the treatment of restricted homogeneous
3-graphs. We introduce a set of “generators” (in a very rough sense) for the
amalgamation class corresponding to H .
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Definition 1 For m ≥ 3 let A(m) consist of the following 3-graphs:

1. All triangles having exactly one side of type 1;

2. K1
n and K3

n for all n;

3. K2
m−1.

We work with the amalgamation class of finite 3-graphs A corresponding to
H . This class satisfies the following positive and negative constraints:

(+m) A(m) ⊆ A

(−m) K2
m /∈ A; no triangle with exactly two sides of type 1 is in A.

Our objective is to show that the conditions (±m) determineA uniquely. We will
call a 3-graph G m-constrained if the class of its finite substructures satisfies
(−m). The following result will evidently complete the classification of the
restricted homogeneous 3-graphs.

Proposition 1 If A satisfies condition (±m) then A consists of the finite m-
constrained 3-graphs.

The use of amalgamation classes allows us to reformulate this as follows.
(This is a subtle and flexible idea introduced by Lachlan.)

Definition 2 Let A be an amalgamation class satisfying (±m). Then A∗ is the
set of A ∈ A satisfying:

Any m-constrained extension A ∪ I by one more E-class belongs to A

Proposition 2 If A is an amalgamation class satisfying (±m) then A∗ is an
amalgamation class satisfying (±m).

To derive Proposition 1 from Proposition 2, we show by induction on n
that for any amalgamation class satisfying (±m) and any finite 3-graph G with
|G/E| = n, G embeds in A. For any n, the induction hypothesis applies to A∗

and n − 1 (using Proposition 2) and this amounts to our claim for A and n.
This trivial inductive argument is the point of Lachlan’s idea.

Much of the proof of Proposition 2 is formal and straightforward. That A∗

satisfies the negative constraints is immediate. That A∗ is an amalgamation
class is relatively straightforward, using the fact that an amalgamation problem
in A∗ has only finitely many possible solutions. One argues that if none of the
possible solutions lie in A∗ then some amalgamation problem in A would have
no solution.

The main point is of course to prove that A(m) is contained in A∗. This is
the core of the classification argument. Some of the work has already been done:
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by Lemmas 8 and 10 any finite 3-graph which consists either of a single class or
of two classes, with one of them a singleton, will belong to A∗. Accordingly to
complete the classification of the restricted imprimitive homogeneous 3-graphs,
what remains to be proved is just:

Lemma 11 Let A be an amalgamation class of finite 3-graphs which satisfies
conditions (±m). Then

1. K2
m−1 ∈ A∗;

2. K3
n ∈ A∗ for all n.

Proof :
Set A = Ki

k with i = 2, k = m − 1 or i = 3, k = n. Consider an m-
constrained extension AI of A by a further E-class. By the usual reductions we
may suppose that I is either (i) indiscernible over A, or (ii) of order 2.

If some a ∈ A satisfies tp(a/I) ∼= i we conclude by induction applied to ai.
To complete the analysis of case (i) we deal with the case: tp(a/I) ∼= i′ where
i′ = 5− i. We perform the following amalgamation.

Let A1, A2 be disjoint copies of Ki
k−1

and Ki
k−2

occupying k − 1 E-classes
all together, and let aA1 ≃ Ki

k, aA2 ≃ Ki
k−1

. Let I2 be a copy of I with
tp(aA2/I2) ∼= i′ and with A1 ∪ A2 ∪ I2 again occupying a total of k − 1 E-
classes. We introduce a further equivalence class bI2 with:

tp(b/aA1A2I2) ∼= 3; tp(I1/A1I2) ∼= i′

tp(I1/A2) ∼= i

Amalgamate A1A2I2ab with A1A2I2I1b over A1A2I2b. If tp(a/I1) ∼= i′ then
A1aI1 ≃ AI and if tp(ay) = i for some y ∈ I1) then A2ayI2 ≃ AI. We need to
find the factors A1A2I2ab and A1A2I2I1b in H ; in particular we should make
them m-constrained.

We may suppose inductively that every m-constrained 3-graph on k − 1
classes is inA∗, since if A /∈ A∗ then the the homogeneous 3-graph corresponding
to A∗ has already been classified. In other words every m-constrained 3-graph
on k classes is in A. This disposes of the second factor. As the first factor has
the form (b) +3 A1A2I2a, a similar argument, using Lemma 6 as well, disposes
of this factor as well.

Now suppose that |I| = 2 and I is not indiscernible over A. Fix a copy of
A in H . We claim that every 1-type over A is realized in every E-class of H
outside A/E. Using homogeneity, if this is true for at least one 1-type over A, it
is true for all 1-types over A which are realized in H – but they are all realized,
by the first part of the argument.

Now consider any 1-type over A which involves the type i. Working in ai

for a ∈ A, it follows by induction that any such type is realized in all E-classes
of ai outside (A− {a})/E, and hence in all E-classes of H outside A/E.
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To sum up, if H is a homogeneous imprimitive 3-graph in which the equiv-
alence relation E is given by the 2-type labelled 1 together with the trivial
2-type, and H omits some K2

m or K3
m, then without loss of generality condi-

tion (∗) holds, and if H has finitely many equivalence classes, it is identified
by Lemma 9, while otherwise it is covered by Proposition 1, which follows by a
simple formal argument from Proposition 2, which in turn is covered by Lemmas
8, 10, and 11.
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5 The semigeneric 3-graph

As always, H is an imprimitive homogeneous 3-graph, and more specifically H
carries an equivalence relation E which is the union of the 2-type labelled 1 and
the trivial 2-type. Furthermore we may now assume that H embeds all 3-graphs
of the form K2

m and K3
m, with m finite. These hypotheses remain in force to

the end of the paper. It will be useful to express these conditions in terms of
the following class A(∞) of “generators”:

(1) All triangles involving exactly one edge of type 1;

(2) Ki
n for all n and for all i = 1, 2, 3.

Thus we assume that H embeds all 3-graphs in A(∞); the condition that E
is an equivalence relation corresponds to the omission of triangles containing
exactly two edges of type 1.

In addition, to deal with the semigeneric case, we must consider the 3-graphs
Oi for i = 2, 3 which consist of two E-classes of order 2, with exactly one edge
of type i, and hence three edges of the other cross type. In the present section
we show that if H omits one of these two graphs then it is semigeneric; the
remaining – generic – case is the subject of the following section. Omission of
both of these graphs will be called the parity constraint (which however we take
to include the condition that the type 1 defines an equivalence relation). The
parity constraint simplifies the analysis of amalgamation considerably.

Lemma 12 H omits O2 if and only if it omits O3.

Proof :

qd

qd

q

q

q
HHH

For the remainder of this section the parity constraint is imposed on H :

(3−) H omits O2 and O3

We now undertake to show that H is semigeneric, or in other words:

Every finite 3-graph G which satisfies the parity constraint embeds in H .

To this end we fix some additional notation. The finite 3-graph G in question is
fixed throughout, and we set n = |G/E|. The argument proceeds by induction
on n. Let G∗ be a section of G, that is a subgraph consisting of n inequivalent
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elements of G. The only possible amalgam of the 3-graphs G∗ ∪ I for I varying
over the E-classes of G, is the 3-graph G itself, in view of the parity constraint.
Accordingly if all these subgraphs embed in H then G will also embed in H .
Therefore we may suppose G = G∗∪I for one E-class I, or in a more convenient
notation: G = GoI with Go a set of n − 1 inequivalent elements, and I an
additional E-class. As usual we may take I to be either indiscernible over
Go, or of order 2. We prefer to organize the analysis under the following two
headings:

(A) I is indiscernible over some point a ∈ Go

(B) |I| = 2

The second case reduces to the first via an amalgamation of Gocc2 with Gocc3
where c, c2, c3 are equivalent and Goc2c3 ≃ GoI. We fix an element x ∈ Go and
choose notation so that tp(xci) = i. We will take tp(xc) = 3 and determine
Gocc2 by amalgamating Goc2 with xcc2 over xc2. As c, c3 are indiscernible over
x, case (A) applies to Gocc3.

Thus it suffices to deal with case (A): I is indiscernible over a ∈ Go, with
type i. If a realizes only type i over the rest of Go then we conclude by induction
applied to ai. We do not know the precise structure of ai but Lemma 4 applies
and hence ai is either restricted, of known type, or satisfies the same hypotheses
as H , in which case induction on n applies. We assume therefore that tp(ab) =
i′ 6= i for some b ∈ Go.

We perform the following amalgamation. Let G1 be a copy of Go −{a} and
for c ∈ I let Gc be a copy of (Go −{a, b})∪ I. Let A = Go ∪

⋃
c∈I Gc, arranged

so as to occupy n−2 E-classes, and satisfying the parity constraint. Let further
AI be taken so that

G1I ≃ (Go − {a})I; cGc ≃ (Go − {a})I for a ∈ I

Now the parity constraint allows a unique completion of the type of AI. More
explicitly: each class of A contains some g1 ∈ G1 and some gc ∈ Gc for each
c ∈ I. Then tp(c′gc) is determined, for c′ 6= c, by:

tp(c′g1); tp(cg1); tp(cgc)

Our intent is to amalgamate AI and Aa so that either aG1I ≃ GoI or
caGc ≃ GoI for some c ∈ I. The main problem is to ensure that a/E 6= I/E.
For this purpose we adjoin elements x1, x2 to one of the E-classes of A and we
require that the parity of a over x1, x2 differs from the parity of the elements of
I over x1, x2. Then we amalgamate AIx1x2 and Aax1x2 over Ax1x2. Each of
the factors has n−1 E-classes and can be taken to satisfy the parity constraint.

Thus if H contains the 3-graphs in A(n) and satisfies the parity constraint,
it is semigeneric.
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6 The generic imprimitive 3-graph

We now assume that H embeds the 3-graphs in A(∞), listed under (1, 2) at the
beginning of the previous section, and in addition:

(3+) H embeds O2 and O3

(there is no parity constraint). We want to show that any finite 3-graph on
which the type 1 defines an equivalence relation can be embedded into H .

We again follow the line introduced by Lachlan, as we did at the end of §4.
We associate to any amalgamation class A another amalgamation class A∗:

{A ∈ A : Any extension AI of A by one more E-class I belongs to A}

and we claim that if A contains A(∞) ∪ {O, O}, then so does A∗. This then
shows that there is only one such amalgamation class, in the same way that
Proposition 2 was used to prove Proposition 1 in §4; and applying this to the
amalgamation class of induced 3-subgraphs of H , it follows that H is generic.

Assume accordingly, for the remainder of the section, that A is a fixed amal-
gamation class containing A(∞) ∪ {O, O}, and that H is the corresponding
homogeneous 3-graph. After some preliminaries, we will show in Lemmas 15-17
that A(∞) ∪ {O, O} ⊆ A∗.

Lemma 13 Every finite 3-graph with at most two E-classes embeds in H.

Proof :
We let G = C1C2 and we may assume that C2 is indiscernible over C1, or

both classes have order 2. If C2 is indiscernible over C1 then Lemma 3 applies:
wherever the type of C2 over C1 is realized, there are infinitely many realizations.

Accordingly we may suppose that C1 and C2 have order 2. There is little
difficulty using O2 and O3 to force any other configuration of this type into H .
Cf. Lemma 12.

Another way of expressing this is: K1
n ∈ A∗ for all n.

Lemma 14 Every finite 3-graph with three E-classes, two of which are single-
tons, embeds in H.

Proof :
It suffices to show that every 1-type overK2

2 orK3
2 is realized infinitely many

times in every other class of H . We work with K2
2 . It suffices to show:

1. Some 1-type over K2
2 is realized in every other class of H ;

2. Every 1-type over K2
2 is realized infinitely many times in some class of H .
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If the 1-type over K2
2 involves the type 2 we can conclude by induction,

working in x2. In this case the type is realized infinitely many times in every
class. It reamins to show that I +3 K2

2 can be embedded in H for every finite
E-class I. The following amalgamation suffices (we use edges to represent the
type 2):

q qd q
I

�




�

	
I1

The factor:

q q q
I

embeds into H by embedding
q q q

and extending by I.

Lemma 15 All triangles with exactly one edge of type 1 lie in A∗.

Proof :
Let the triangle be ca2a3 with tp(a2a3) = 1. We must embed an extension

of the form ca2a3I into H , where I is an additional E-class.
Suppose first that tp(cai) = i for i = 2, 3. Amalgamate caa2I with caa3I

over caI where a, a2, a3 are E-equivalent, tp(ca) = 2, and = tp(a/I) is deter-
mined by amalgamating ca3I and ca3a over ca2. This is possible by the previous
lemma. It remains to show that the factor caa2I embeds in H . This however is
an extension of a triangle with one edge of type 1 and the remaining edges of
the same type, so it will suffice for the proof of the Lemma to treat this case.

Suppose tp(cai) = 2 for i = 2, 3. Let I2, I3 be two copies of I. Amalgamate
caa2I2I3 and caa3I2I3 over caI2I3 where aa2a3 and I2I3 form two E-classes,
ca2a3I2 ≃ ca2a3I, tp(ca) = 3, and aiaIi ≃ a2a3I. The onlyu difficulty is to
force the factors caaiI2I3 into H . If we amalgamate caiI2I3 with aaiI2I3 over
aiI2I3, we either get tp(ca) = 3 or we get a copy of ca2a3I. The factors caiI2I3
and aaiI2I3 are covered by the previous two lemmas.

Lemma 16 K2
n and K3

n are in A∗ for all n.

Proof :
Let A ⊆ H with e.g. A ≃ K2

n. It suffices to show that every 1-type over
A has infinitely many realizations in every E-class of H − A/E. For a-types
involving type 2 this follows by considering x2.

It now suffices to show that the remaining configuration K2 +3 I with I a
finite E-class can be embedded in H . We use the following amalgamation:
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The factor omitting a has n classes, hence embeds in H . The factor omitting I
has the form (x) +A where A has n classes, and hence embeds in H .

Lemma 17 O2 ∈ A∗

Proof :
We use an amalgamation of the following form:

q

q

qd

qd

qa
a3

a2
I1

I2

where the dotted edge indicates that the type of a over I1I2 is determined in
the course of the construction, namely in the construction of the factor omitting
a3. We exhibit the two factors required:

(1) q

q

q

q
I1
I2

(2) q

q

q

q
I1
I2

The factor (2) and the subfactors needed to form (1) are easily obtained on
the basis of the information so far. We know that the 3-graph corresponding
to A∗ is either generic or semigeneric. In the case of (2), for example, the first
two classes satisfy the parity constraint and hence certainly belong to A∗. Thus
(2) belongs to A, as claimed. The amalgamation producing (1) uses O2 and
another factor known to be in A.

With this lemma we have completed the verification thatA∗ containsA(∞)∪
{O, O}. As we have explained, it follows by induction that A contains all 3-
graphs on which the relation E given by the 2-type 1 and the trivial 2-type is
an equivalence relation; equivalently, H is generic.

This completes the classification of the imprimitive homogeneous 3-graphs.
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