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In this paper the following theorem is proved regarding groups of finite Mor-

ley rank which are perfect central extensions of quasisimple algebraic groups.

Theorem 1 Let G be a perfect group of finite Morley rank and let C◦ be a

definable central subgroup of G such that G/C◦ is a universal linear algebraic

group over an algebraically closed field; that is G is a perfect central extension

of finite Morley rank of a universal linear algebraic group. Then C◦ = 1.

Contrary to an impression which exists in some circles, the center of the

universal extension of a simple algebraic group, as an abstract group, is not
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finite in general. Thus the finite Morley rank assumption cannot be omitted.

Corollary 1 Let G be a perfect group of finite Morley rank such that G/Z(G)

is a quasisimple algebraic group. Then G is an algebraic group. In particular,

Z(G) is finite ([3] Section 27.5).

An understanding of central extensions of quasisimple linear algebraic groups

which are groups of finite Morley rank is necessary for the classification of tame

simple K∗-groups of finite Morley rank, which constitutes an approach to the

Cherlin-Zil’ber conjecture. For this reason the theorem above and its corollary

were proven in [5] (Theorems 4.1 and 4.2) under the assumption of tameness,

which simplifies the argument considerably. The result of the present paper

shows that this assumption can be dropped. The main line of argument is

parallel to that in [5]; the absence of the tameness assumption will be countered

by a model-theoretic result and results from K-theory. The model-theoretic

result places limitations on definability in stable fields, and may possibly be

relevant to eliminating certain other uses of tameness.

Our terminology and notation with regard to groups of finite Morley rank

conforms to that in [2]; for algebraic groups the reader is referred to [3] or [9].

The first part of the paper is devoted to the model-theoretic definability

result which will be needed to eliminate the use of tameness in the theory of

central extensions. The argument we give is carried out in greater generality

than is needed in the case of finite Morley rank, at the cost of a few extra

preparatory definitions, which would be irrelevant in that case. This seems

2



appropriate as the definability issues raised here may be of interest in connection

with the general study of stable fields, a mysterious but intriguing subject.

If ϕ(x̄, ȳ) is a formula with two sets of free variables, by a ϕ-formula we

will mean either a formula of the form ϕ(x̄, b̄) with b̄ taken from some ambient

model, or the negation of such a formula. Note that this notion depends not

only on the formula ϕ, but on the manner in which its free variables have been

partitioned.

Definition 1 ([6], Definition 6.13, p. 72) Let L be a first-order language

and ϕ(x, y) (l(x) = n) be an L-formula. The ordinal valued rank Rϕ
ℵ◦

of an

n-formula ψ(x) (possibly with parameters) is defined as follow:

(i) If ψ(x) is consistent, then Rϕ
ℵ◦
(ψ) ≥ 0

(ii) If δ is a limit ordinal. then Rϕ
ℵ◦
(ψ) ≥ δ if Rϕ

ℵ◦
(ψ) ≥ α for all α < δ.

(iii) If α = β + 1 then Rϕ
ℵ◦
(ψ) ≥ α if for each i < ω, there exists Ψi, a finite

collection of ϕ-formulas, such that

(a) For i < j < ω, Ψi and Ψj are contradictory (i.e. either there are

ϕ(x, b) ∈ Ψi and ¬ϕ(x, b) ∈ Ψj or there are ¬ϕ(x, b) ∈ Ψi and

ϕ(x, b) ∈ Ψj),

(b) For each i < ω, Rϕ
ℵ◦
(ψ ∧

∧
Ψi) ≥ β.

(iv) If Rϕ
ℵ◦
(ψ) ≥ α for all ordinals α, then we say Rϕ

ℵ◦
(ψ) = ∞, and, if Rϕ

ℵ◦
≥ α

but Rϕ
ℵ◦

̸≥ α+ 1 for an ordinal α, we say Rϕ
ℵ◦

= α.
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Fact 2 ([6], Proposition 6.21) A first-order theory T is stable if and only if

for all ϕ(x, y), Rϕ
ℵ◦
(x = x) is finite.

Definition 3 If p is an n-type then then Rϕ
ℵ◦
(p) is defined as min{Rϕ

ℵ◦
(ψ(x)) :

ψ(x) ∈ p}.

Note that by the definition of the Rϕ
ℵ◦

rank, in a stable theory, a formula

ψ(x) is contained only in finitely many ϕ-types (i.e. restrictions of types to the

ϕ-formulas that they contain) of maximal rank, i.e. the multiplicity is finite.

Fact 4 ([6], Lemma 6.24, p. 74) Let ψ1(x) and ψ2(x) be formulas with pa-

rameters. Let ϕ(x, y) be an L-formula. Then Rϕ
ℵ◦
(ψ1∨ψ2) ≤ max(Rϕ

ℵ◦
(ψ1), R

ϕ
ℵ◦
(ψ2)).

Definition 5 Let T be a stable theory. Let ψ1(x) and ψ2(x) be formulas with

parameters. Let ϕ(x, y) be a L-formula. We say ψ1 ∼ ψ2 if Rϕ
ℵ◦
(ψ1) = Rϕ

ℵ◦
(ψ2)

and Rϕ
ℵ◦
(ψ1△ψ2) < Rϕ

ℵ◦
(ψ1), where △ denotes the symmetric difference.

The following lemma follows from Facts 2 and 4.

Lemma 6 In a stable environment, the relation ∼ defines an equivalence rela-

tion.

Fact 7 ([7], Lemme 1.1, p.20) A stable monoid which is left and right-cancellable,

or which is left-cancellable and has a right identity, is a group.

Fact 8 ([4]) An infinite ω-stable field F is algebraically closed. Furthermore,

its additive and multiplicative groups, F+ and F ∗, are both connected groups –

that is, they have no proper definable subgroups of finite index.
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It is useful to know that in the more specific context of ω-stable structures

of finite Morley rank, we never encounter pairs of algebraically closed fields

K ≤ F . This is because the structure (F ;K) (with the inclusion of K into F )

has Morley rank ω; in any case it is quite easy to see that the rank is infinite.

Cf. [7], Lemme 3.2.

To state our result on definability we need one further definition.

Definition 9 ([7], Chap. 5, §a.) Let G be a stable group, and X a definable

subset of G. Then X is generic in G if G can be written as the union of finitely

many translates of X. (It is proved that it makes no difference whether one

allows right translates, left translates, or both together.). A type p over G is

said to be generic if it contains generic formulas only.

Fact 10 ([7], Lemme 5.1) Let G be a stable group. If A is a definable subset

of G, then either A or ¬A is generic.

As we will be using the notion of generic set within a stable field F , and

there are two group structures available (deletion of (0) being an inessential

alteration), it simplifies matters further to know that the notion of genericity is

not dependent on which of the group structures is considered. (This is not known

to hold for arbitrary stable group structures, but is correct for the additive

and multiplicative structures on stable fields, ultimately because of the linkage

provided by the distributive law.) Cf. [7], Theorem 5.10.

A stable group G acts on its 1-types: if p is such a type realized by x in an
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elementary extension of G and g ∈ G, then gp is the type of gx over G. This

action was investigated by Poizat in [7] where he proves the following fact:

Fact 11 ([7], Corollaire 5.6) Every type can be translated to the neighbor-

hood of a generic, i.e. if p is a 1-type and θ(x) is a generic formula, then there

exists g ∈ G such that gp satisfies θ.

The following result on definability is of a type frequently occurring in sta-

bility theory. It is crucial in the proof of Theorem 1:

Theorem 2 Let F be a stable field and F◦ an infinite subfield of F , not assumed

definable. Suppose that A is a definable subset of F which contains F◦, and A

is not a generic subset of F . Then F has an infinite proper definable subfield

containing F◦.

Proof. Let ψ(x, ȳ) be a formula such that some instance ψ(x, c̄) defines A, and

let ϕ(x; ȳ, z1, z2) be the formula ψ(z1x + z2, ȳ). Let A = {a + bA : a ∈ F, b ∈

F ∗, F◦ ⊆ a + bA} and A∗ = {A1 ∩ . . . ∩ Ak : A1, . . . , Ak ∈ A}. The sets in A

are all definable by instances of ϕ.

Let X be a set in A∗ of minimal rank and multiplicity. Let R = {r ∈

F : r + X ∼ X} and S = {r ∈ R : rR ⊆ R}. R acts on the finite set of

ϕ-types of maximal rank which contain the partial ϕ-type corresponding to X.

In particular, the pointwise stabilizer R◦ of this set is of finite index in R. The

definability of types in stable theories implies that R◦ is a definable subgroup

(see p. 162 of [7]). Therefore, so is R, and hence also S.

6



Let a ∈ F◦ \ {0}. Since X is of the form (a1 + b1A) ∩ . . . ∩ (ak + bkA),

where the ai are in F and the bi are in F ∗, and each ai + biA contains F◦,

a+X = (a+a1+ b1A)∩ . . .∩ (a+ak+ bkA) ∈ A∗. Similarly, we have aX ∈ A∗.

Since X is a set in A∗ of minimal rank and multiplicity, (a+X)∩X and aX∩X,

which are elements of A∗ also, have the same rank and multiplicity as X. This

implies a + X ∼ X and aX ∼ X. The first of these equivalences shows that

F◦ ⊆ R. Using the second one we will show that F◦ ⊆ S. Let r ∈ R. Then

ar +X ∼ a(r + a−1X) ∼ a(r +X) ∼ aX ∼ X. Thus ar ∈ R and a ∈ S. Since

0 is clearly in S, we conclude F◦ ⊆ S.

As R is an additive group, S is a subring of F . Thus S is a stable integral

domain, and we conclude that it is a field using Fact 7. It remains to be seen

that it is a proper subfield. As S ≤ R, it suffices to show that R ̸= F . Suppose

towards a contradiction that R = F . Note that R stabilizes a ϕ-type containing

X. Let p be a complete type containing this ϕ-type. As X is not generic, its

complement is by Fact 10. By Fact 11, there exists r ∈ R such that r + p

contains ¬X. But r + p contains X as well, a contradiction. This shows that

R < F and finishes the proof. □

Corollary 2 Let F be an ω-stable field of finite Morley rank and F◦ an infinite

subfield of F . Suppose that A is a definable subset of F which contains F◦.

Then RM(A) = RM(F ), where RM is the Morley rank.

Proof. If RM(A) < RM(F ) then evidently A is not a generic subset of F , and
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thus F contains a proper infinite definable subfield K containing F◦. But as the

rank of the pair (F ;K) is infinite, and K is definable, the rank of F is infinite,

a contradiction. □

The second ingredient in the proof of Theorem 1 is the theory of central

extensions of linear algebraic groups as explained in [9], blended with a dose of

model theory needed for definability arguments. This ingredient was already

present in [5], but we will give an overview here as well. Our notation and

terminology for linear algebraic groups follows [9] except where stated otherwise.

It is worth emphasizing that the phrase “simple group” is used in the sequel for

a group which is simple as an abstract group. For any group G and x, y ∈ G,

(x, y) denotes xyx−1y−1.

For a field k and a root system Σ the following relations over a set of symbols

{xα(t) : α ∈ Σ, t ∈ k} are considered:

(A) xα(t) is additive.

(B) If α and β are roots and α+β ̸= 0, then (xα(t), xβ(u)) =
∏
xiα+jβ(cijt

iuj),

where i and j are positive integers and the cij are integers depending on

α, β, and the chosen ordering of the roots, but not on t or u.

(B′) wα(t)xα(u)wα(−t) = x−α(−t−2u) for t ∈ k∗, where

wα(t) = xα(t)x−α(−t−1)xα(t)

for t ∈ k∗.
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(C) hα(t) is multiplicative in t, where hα(t) = wα(t)wα(−1) for t ∈ k∗.

Throughout the present paper, Xu will denote the groups presented by (A)

and (B) if the rank of Σ is greater than 1 and by (A) and (B′) if the rank of Σ is

equal to 1. If the relation (C) is added then the group presented is the universal

Chevalley group ([9]). (The notation Xu is different from that used in [9]).

Fact 12 ([9], Lemma 39, p. 70) Let α be a root and Xu be as above. In Xu,

set f(t, u) = hα(t)hα(u)hα(tu)
−1. Then:

(a) f(t, u2v) = f(t, u2)f(t, v).

(b) If t, u generate a cyclic subgroup of k∗ then f(t, u) = f(u, t).

(c) If f(t, u) = f(u, t), then f(t, u2) = 1.

(d) If t, u ̸= 0 and t+ u = 1, then f(t, u) = 1.

Fact 13 ([9], Theorem 9, p. 72) Assume that Σ is indecomposable and that

k is an algebraic extension of a finite field. Then the relations (A) and (B)

(or (B′) if rank Σ = 1) suffice to define the corresponding universal Chevalley

group, i.e. they imply the relations (C).

Fact 14 ([9], Theorem 10, p. 78) Let Σ be an indecomposable root system

and k a field such that |k| > 4, and if rank Σ = 1, assume further that |k| ̸= 9.

If X is the corresponding universal Chevalley group (abstractly defined by the

relations (A), (B), (B′), (C) above), if Xu is the group defined by the relations
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(A), (B), (B′) ( (B′) is used only if rank Σ = 1), and if π is the natural ho-

momorphism from Xu to X, then (π,Xu) is a universal covering extension of

X.

Fact 15 ([9], Corollary 2, p. 82) Xu is centrally closed. Each of its central

extensions splits, i.e. its Schur multiplier is trivial. It yields the universal

covering extension of all the Chevalley groups of the given type.

Fact 16 ([9], Theorem 12 (Matsumoro, Moore)) Assume that Σ is an in-

decomposable root system and k a field with |k| > 4. If X is the universal

Chevalley group based on Σ and k, if Xu is the group defined by (A), (B), (B′),

and if π is the natural map from Xu to X with C = kerπ, the Schur multiplier

of X, then C is isomorphic to the abstract group generated by the the symbols

{t, u} (t, u ∈ k∗) subject to the relations:

(a) {t, u}{tu, v} = {t, uv}{u, v}; {1, u} = {u, 1} = 1

(b) {t, u}{t,−u−1} = {t,−1}

(c) {t, u} = {u−1, t}

(d) {t, u} = {t,−tu}

(e) {t, u} = {t, (1− t)u}

and in the case Σ is not of the type Cn (n ≥ 1) the additional relation

(ab′) { , } is bimultiplicative .

In this case relations (a)-(e) may be replaced by (ab′) and
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(c′) { , } is skew.

(d′) {t,−t} = 1.

(e′) {t, 1− t} = 1.

The isomorphism is given by ϕ : {t, u} 7−→ hα(t)hα(u)hα(tu)
−1, α a fixed long

root.

We consider a perfect central extension G of finite Morley rank of a universal

linear algebraic group X over an algebraically closed field K. Let (π,Xu) be

the universal covering extension of X, C = kerπ and C◦ = kerψ where ψ is

the covering map from G onto X. By the universality of (π,Xu), there exists a

map θ from Xu into G such that ψθ = π. Using the perfectness of G one can

show that θ is surjective and C = θ−1(C◦). As, by Fact 16, C is generated by

f(t, u) where f is as in Fact 12, it is important to prove the interpretability in

G of θ ◦ f in order to understand the structure of C◦. This was achieved in [5]

by the following result:

Fact 17 ([5], Proposition 4.12) Let G be a group of finite Morley rank. As-

sume that G is a perfect central extension of a universal linear algebraic group

X, such that the kernel of the covering map from G onto X is a definable central

subgroup of G. If Xu is the universal covering of X and θ : Xu −→ G is the

unique induced map, and f : K ×K −→ Xu is the function defined in Fact 12,

then the function θ ◦ f is interpretable in G.
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Before we start the proof of Theorem 1 we need one last ingredient. This

comes from K-theory. The kernel of the covering map π is known in K-theory

as K2(K) where K is the field over which the Chevalley group is defined. Fact

12 and Fact 16 describe how the group K2(K) is presented. The definition

of K2 can be generalized to rings and K2 is actually a functor from rings to

abelian groups. We will make use of some results about K2 to show that in our

case the algebraically closed field K contains an infinite subfield over which the

generators f are trivial. This will be used to prove Theorem 1.

The characteristic of the fieldK plays an important role. If the characteristic

of K is different from 0 then Fact 13 proves that over the algebraic closure of

the prime field, the generators f(t, u) are all equal to 1. This will provide the

necessary infinite subfield. When the characteristic of K is 0, the following two

results from K-theory imply that f is trivial on Q×Q:

Fact 18 ([8], Theorem 4.4.9, p. 225) K2(Q) is a direct limit of finite abelian

groups.

Fact 19 ([1]) If F is an algebraically closed field then K2(F ) is a divisible

torsion-free group.

Now we can prove Theorem 1.

Proof of Theorem 1. The arguments above show that in all characteristics

K has an infinite subfield K◦ such that for t, u ∈ K◦, f(t, u) = 1. Let t ∈ K∗.

We define Bt = {u ∈ K∗ : f(t, u) = 1}. As K is an algebraically closed field,
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Bt is a subgroup of K∗ by Fact 12 (a). We will show that for any t ∈ K∗ \ {1},

Bt = K∗. This will prove the theorem. First let t ∈ K◦. Since Bt ≥ K∗
◦ ,

Corollary 2 implies that Bt is generic in K∗. But K∗ is connected (Fact 8),

therefore Bt = K∗. Now choose t to be any element of K∗ \ {1}. For any

u ∈ K \{1}, f(t, u) = f(u−1, t) by Fact 16 (c). But if u ∈ K∗
◦ then f(u−1, t) = 1

by the first part of the argument. Hence, Bt ≥ K∗
◦ and we conclude again by

Corollary 2 that Bt = K∗. □

The derivation of Corollary 1 from Theorem 1 is as in [5].
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