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ABSTRACT

A tree is called bushy if it has no vertex of degree 2. Theorem: the class of countable graphs omitting a

fixed bushy tree has no universal element.

Introduction

Rado observed [R] that there is a universal countable graph, that is a countable graph G such that every

countable graph is isomorphic to an induced subgraph of G. Many similar problems have been considered

in the literature, involving a wide range of classes of graphs, and frequently set theoretic complications are

involved. We have chosen to focus on a form of the general problem that can be construed as an algorithmic

problem: given a finite set C of finite connected graphs, does the class of countable graphs which omit C

contain a universal element? Here we say that a graph G omits a class C of graphs if none of the graphs in C

is isomorphic to a subgraph of G (a much more stringent condition than omission of these graphs as induced

subgraphs). The problem in general is to characterize the classes C for which there is such a universal graph,

or at least to establish that there is an algorithm which will produce the answer in each case. This problem

remains open when C consists of a single element, though this is by far the best understood case: graphs

omitting a single “forbidden subgraph”.

It is an immediate consequence of Fräıssé’s theory [F] that if C consists of a single complete graph

then the corresponding class of countable graphs has a universal element. Füredi and Komjáth have shown

[FK] that the class of countable graphs omitting a given incomplete, 2-connected graph A has no universal

element. This remarkably general result was arrived at by stages; the case of a cycle of order 4 was treated

in [P], the case of general cycles was handled in [CK] (and finite sets of finite cycles are handled completely

by combining [KMP] and [CS]), while complete bipartite graphs are treated in [KP]. The method is more or
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less the same in all cases, going right back to the case of the cycle of order 4, but very substantial difficulties

arise as one attempts to carry it out in general.

The general graph can be analyzed in terms of its blocks, which is to say, roughly speaking, as a tree of

(mainly) 2-connected blocks meeting in single vertices. In view of the Füredi/Komjath result, this suggests

that an analysis of graphs omitting a given tree would cast some complementary light on the situation.

The simplest case of this, graphs omitting a given finite path, is elegantly analyzed in [KMP], and yields a

positive result: there is a universal object in all such cases, because there is a structure theory for this class.

Work of the third author, to be included in his doctoral dissertation, shows that this structure theory is valid

somewhat more generally in a form which can be used to solve positively a number of related problems, and

in particular to provide a positive answer for trees formed from a path by attaching one more vertex. There

is a certain amount of evidence suggesting that in all other cases, there is no universal graph omitting the

given tree.

Conjecture [Tallgren]

Let T be a tree of order n, and G the class of countable graphs omitting T . Then G has a universal

element if and only if the tree T contains a path of order n− 1.

This paper will provide some of the evidence for this conjecture; some additional evidence will be noted

below. We call a tree bushy if it has no vertex of degree 2. Given a tree T , we say that a graph G is T -free

if it omits T , that is T does not embed in G as a subgraph.

Theorem

Let T be a finite bushy tree with at least 5 vertices. Then the class of T -free countable graphs has no

universal element. More specifically, there is a collection of 2ℵ0 T -free graphs such that at most countably

many of them embed into any single countable T -free graph.

Theoretical considerations which it would be too tedious to detail here suggest that the presence of

vertices of degree 2 introduces an additional set of complications. The proof we give here involves certain

subtleties that disappear if one is willing to sacrifice much of the generality of the result.

Scholium

Let T be a finite bushy tree, and let m be the minimal degree of a vertex of T , other than the leaves.

If there is a vertex of T which has degree m and is adjacent to a leaf, then there is a collection of 2ℵ0 T -free

graphs H such that H is a connected component of any T -free graph containing it.

In our proof of the theorem it will be seen that we arrive at a situation strictly parallel to the situation

described in the scholium, but at a slightly higher level of abstraction. The subtleties involved in dealing

with vertices of degree 2 seem to be of a rather more serious nature, though we feel that the overall situation

will probably turn out to be analogous, if these subtleties are mastered.

Other evidence for the conjecture stated above concerns generalized stars, which are trees containing

only one vertex of degree greater than 2, and bridges, which are trees consisting of a single path which

forks at both ends (so there are two vertices of degree greater than 2, both of which have degree 3 and are

adjacent to two leaves). There is no universal countable graph omitting a given bridge [GK], and the result

for generalized stars conforms to the stated conjecture; the proof is expected to be included in the third

author’s doctoral dissertation.

We are grateful to Brenda Latka for her useful comments on an early draft of this paper.
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The following notation will be fixed throughout.

T is a bushy tree with at least two nonleaves (vertices of degree greater than 1).

n = |T |.

T1 is the set of nonleaves of T which are adjacent to at least one leaf of T . T2 is the subtree of T whose

vertices are the nonleaves of T .

t = |T1|

m is the minimal degree of a nonleaf of T (so m ≥ 3); m1 is the minimal degree in T of a vertex of T1.

s = n− t− 1

The argument that follows will not work if T1 contains only one vertex. In this case T is a star and a

T -free graph is a graph of maximal degree at most n−2. It is easy to see in this case that there is a universal

countable T -free graph if and only if n is at most 4. We will assume therefore that t ≥ 2.

We remark that for any tree T , the order of T equals:

2 +
∑

v∈V (T )

(deg(v)− 1),

and hence with the notation above:

Lemma 1

n ≥ t(m1 − 1) + 2 ≥ t(m− 1) + 2

We use the notation Γ(v) for the set of neighbors of v in a given graph, and occasionally we write Γ(A)

for
⋃

v∈A
Γ(v) − A, which we refer to as the set of neighbors of A. Cliques are the vertex sets of complete

subgraphs of a specified graph.

§1. Tight embedding

We keep the notation established in the introduction. Our main tool is the following technical notion.

Definition 1

Let G be T -free, A a clique of order s. Then A is tightly embedded in G if there is a partition of A into

nonempty subsets A1, . . . , Ak and a set of distinct vertices w1, . . . , wk in G−A such that:

1. Ai ⊆ Γ(wi);

2. k > t.

The significance of the parameter s can be seen in the proof of the following result, and again in the

proof of Lemma 8.

Lemma 2

If G is T -free and A is a tightly embedded clique of order s in G, then the sets Γ(v) ∩ A for v ∈ Γ(A)

partition A. In other words, the vertices w1, . . . , wk referred to in the definition of tight embedding must

exhaust the neighbors of A, and we have Ai = Γ(wi) ∩A for all i ≤ k.

Proof :

If this is not the case then for some i ≤ k and for some v ∈ Ai, Γ(v)− A contains a vertex w 6= wi. As

a matter of notation we may take i = t+ 1 and we may suppose that w /∈ {w1, . . . , wt−1}. We will produce

a contradiction by embedding T in G. We enumerate the vertices of T1 as v1, . . . , vt in such a way that vt is
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adjacent to at least two leaves of T . We define a partial embedding f of T into G whose domain consists of

v1, . . . , vt together with one leaf adjacent to each of v1, . . . , vt−1, and two leaves adjacent to vt; the vertices

vi are mapped into Ai for i ≤ t − 1 and vt maps to v, while the leaf selected adjacent to vi maps to wi for

i ≤ t − 1, and the two leaves selected adjacent to vt map to w and wt+1. At this point the domain of f

consists of 2t+ 1 points and its range meets A in t points, so there remain n− (2t+ 1) vertices in T to map

into s− t vertices of A, and since s− t = n− (2t+ 1), there is such an extension of f . Since A is a clique,

any such extension of f is an embedding of T into G.

Corollary

Let G be a T -free graph, H a subgraph, and A a clique of order s which is tightly embedded in H .

Then A is tightly embedded in G, Γ(A) is the same whether computed in H or in G, and G and H contain

the same edges joining A to Γ(A).

Proof :

The first statement is immediate on the basis of the definition of tight embedding. The second then

follows from Lemma 2.

Lemma 3

Let G be a T -free graph, A ⊆ G a tightly embedded clique of order s, and C ⊆ G any clique of order s

which meets A. Then C = A.

Proof :

As C ⊆ Γ(A) ∪ A, Lemma 2 implies that C − A contains at most one vertex. Now if C − A contains

a vertex v, then as Γ(v) meets A in s − 1 points, Lemma 2 implies that A has at most two neighbors, a

contradiction as we have assumed t ≥ 2 and |Γ(A)| > t.

Lemma 4

Suppose that the bushy tree T has a vertex w0 ∈ T1 of degree m. Let G be a T -free graph, A and B

cliques of order s with A tightly embedded in G, and w a vertex outside A∪B with |Γ(w)∩A| ≥ m− 2 and

|Γ(w) ∩B| ≥ 1. Then |Γ(w)| = m− 1.

Proof :

Assuming Γ(w) ≥ m, we will embed T in G. Select X ⊆ Γ(w)∩A with |X | = m− 2, b ∈ Γ(w)∩B, and

v ∈ Γ(w)−(X∪{b}). Also fix a leaf v0 of T adjacent to w0. Let T
′ be a connected component of T −{v0, w0}

whose order is maximal subject to |T ′| ≤ (n − 1)/2 (there is at most one component of T − {v0, w0} not

satisfying this condition). Note that if T ′ does not consist of just one leaf of T , then we have |T ′| ≥ m

In order to embed T into G we first send v0, w0 to v, w respectively. We will embed T ′ into B, using b

for the neighbor of w0 in T ′. We will then embed the rest of T into A ∪ Γ(A). There are various points to

be checked.

In the first place we must show that the embedding of T ′ into B is possible, or in other words that

|T ′| ≤ s. As |T ′| ≤ (n − 1)/2 and s = n − t − 1 this reduces to: n ≥ 2t + 1. As m ≥ 3 this follows from

Lemma 1. Now fix such an embedding f0 of T ′ ∪ {v0, w0} into B ∪ {v, w}.

In the second place we must extend f0 to the remaining vertices of T . The remaining neighbors of w0

in T will be mapped into X . Let t0 = |T1 − Γ(w0)|. Choose distinct vertices w1, . . . , wt0 in Γ(A) − {w}

and vertices vi ∈ Γ(wi) ∩ A. Let f1 be an extension of f0 which sends the vertices in T1 − Γ(w0) to the vi
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for 1 ≤ i ≤ t0 and which sends one leaf adjacent to each such vertex to the corresponding vertex wi. The

domain of f1 has 2t0 + (m − 2) + 2 + |T ′| elements, and the range meets A in t0 + (m − 2) elements, so to

extend f1 to all of T we require:

n− (2t0 + (m− 2) + 2 + |T ′|) ≤ s− (t0 + (m− 2)) = n− t− 1− (t0 + (m− 2))

This reduces to t ≤ t0 + 1 + |T ′|. But t0 ≥ t −m and if |T ′| > 1 then |T ′| ≥ m, as noted earlier, and the

desired inequality certainly holds. On the other hand if |T ′| = 1, then the maximal choice of T ′ (with at

most one exceptional component) implies that w0 is adjacent to at most one nonleaf. In this case t0 ≥ t− 1

and again the required inequality holds.

Dropping our special hypothesis on T , we get a weaker result.

Lemma 5

Let G be a T -free graph, A and B cliques of order s with A tightly embedded in G, and w a vertex

outside A ∪B with |Γ(w) ∩A| ≥ m− 2 and |Γ(w) ∩B| ≥ 1. Then |Γ(w) ∩ (A ∪B)| = m− 1.

Proof :

If there is a vertex in T1 of degree m in T then the result of the previous lemma is stronger. Suppose

therefore that every vertex of T1 has degree greater than m, and in particular has degree at least 4. Then

Lemma 1 says:

(1) n ≥ 3t+ 2

We must show that if |Γ(w) ∩B| ≥ 2 or |Γ(w) ∩A| ≥ m− 1, then we can construct an embedding of T into

G.

Suppose first that |Γ(w)∩B| ≥ 2. Then we choose w0 a vertex of T of order m, and components T ′, T ′′

of T − {w0} of minimal order; then |T ′|+ |T ′′| ≤ (2/3)(n− 1) since there are at least three components. To

embed T into G, first send w0 to w and embed T ′, T ′′ into B with the vertices adjacent to w0 mapped to

two vertices of B adjacent to w. For this we need |T ′|+ |T ′′| ≤ s, which follows from (1). Now to complete

the embedding we again use A together with t0 neighbors of A, where t0 = |T1 −Γ(w0)|. As in the previous

lemma, to complete this we require the estimate:

n− (2t0 + (m− 2) + 1 + |T ′|+ |T ′′|) ≤ s− (t0 + (m− 2))

which reduces to: t ≤ t0 + |T ′| + |T ′′|. Now as m < m1, the vertex w0 is not adjacent to a leaf and T ′, T ′′

are not leaves, and since t0 ≥ t−m our inequality holds.

Now suppose that |Γ(w) ∩ A| ≥ m − 1. In this case we embed one component T ′ of T − {w0} into B

(respecting the adjacency with w0), where |T ′| ≤ n/2. With t0 = |T1 − Γ(w0)| the final estimate required

to complete the embedding using A ∪ Γ(A) will be: n− (2t0 + (m− 1) + 1 + |T ′|) ≤ s− (t0 + (m − 1)), or

t ≤ t0 + |T ′|. This holds, as before, since |T ′| ≥ m.

Lemma 6

Let G be a T -free graph, A and B two disjoint cliques of order s which are tightly embedded in G, and

w a vertex in Γ(A) with |Γ(w) ∩A| = 1, |Γ(w) ∩B| = m− 2. Then for any clique C of order s contained in

G, if w ∈ Γ(C) then C = A or C = B.

Proof :

If C meets A or B then our result follows by Lemma 3. If m = m1 the result follows by Lemma 4. If

C is disjoint from A ∪B and m < m1 then we can easily embed T in G, by a variant of the construction in

the proof of the previous lemma, in the case |Γ(w) ∩B| ≥ 2.
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§2. A construction

As motivation for the construction that follows, we first indicate a “decoding” procedure that extracts

some relevant structure from an arbitrary T -free graph (specifically, we are decoding some of the structure

of the algebraic closure operator in the model theoretic sense, but it is not necessary to go into this).

Definition 3

Let G be a T -free graph.

XG is the set of cliques of order s which are tightly embedded in G.

NG : X2
G

−→ N is defined as follows. For C1, C2 ∈ XG, NG(C1, C2) is the cardinality of the following

set:

{w ∈ Γ(C1 ∪ C2) : |Γ(w) ∩ C1| = m− 2, |Γ(w) ∩ C2| = 1}

Lemma 7

If G is a T -free graph and H is a subgraph (not necessarily an induced subgraph), then XH ⊆ XG and

NH is the restriction of NG to XH .

Proof :

This is all contained in the corollary to Lemma 2.

Now we describe the construction of a large number of T -free graphs for which the associated structures

(XG, NG) will be seen to be incompatible in a sense that yields the main result.

Construction

Let ε ∈ {0, 1}N.

1. We define a notion of t-acceptability. If t > 2 then any ε in {0, 1}N is t-acceptable. If t = 2 then ε is

t-acceptable if and only if there is no k ∈ N with ε(k) = ε(k + 1) = 1.

2. For ε a t-acceptable sequence, we construct a labeled rooted tree Tε (inductively, by levels) as follows.

The labels will be 0, 1, or 2. The root of the tree carries the label 0. For k ∈ N, any vertex at level k with

label l has s − ε(k) − l(m − 2) successors (a positive number, as we shall see momentarily) at level k + 1.

If ε(k) = 0 these successors all carry the label 1, and otherwise one of them carries the label 2 and the

remainder carry the label 1. In particular when t = 2 we will never have ε(k) = 1 at the same time that the

label is 2. Using Lemma 1 we find that

s− ε(k)− l(m− 2) ≥ t(m− 2) + 1− ε(k)− l(m− 2) = (t− l)(m− 2) + (1− ε(k))

and this is positive since either t > l or else t = l = 2, in which case ε(k) = 0.

3. From the tree Tε we construct a T -free graph Gε as follows. Let G◦
ε be the disjoint sum of complete

graphsKv of order s, for v ∈ V (Tε), and Cv = V (Kv). We extend G◦
ε as follows. If u, v are successive vertices

of Tε and v carries the label l, then l vertices w are introduced satisfing: |Γ(w)∩Cu| = 1; |Γ(w)∩Cv | = m−2.

Furthermore we require that whenever w1, w2 are neighbors of the clique Cv, then Γ(w1)∩Cv and Γ(w2)∩Cv

are disjoint. Observe in this connection that if v has the label l, then Cv has l neighbors each of which is

adjacent to m− 2 vertices of Cv, and s− l(m− 2) neighbors each of which is adjacent to one vertex of Cv,

so that we may take the sets Γ(w) ∩ Cv to partition Cv as w runs over the neighbors of Cv.
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Lemma 8

If ε ∈ {0, 1}N is t-acceptable then the associated graph Gε is T -free and the cliques Cv for v a vertex of

Tε are tightly embedded in Gε.

Proof :

We show first that Gε is T -free. The vertices not in the cliques Cv are of degree m− 1. Hence in any

embedding f of T into Gε the vertices of T2 must map into various cliques Cv, and since T2 is connected

they must map into a single clique Cv and T maps into Cv ∪ Γ(Cv). As the sets Γ(w) ∩ Cv (w ∈ Γ(Cv))

partition Cv, the range of f contains at most t vertices in Γ(Cv). This means we have mapped n vertices

injectively into at most s+ t = n− 1 vertices, a contradiction.

To check that Cv is tightly embedded, one point remains: we must check that Cv has at least t + 1

neighbors. According to our construction the minimal number of neighbors is 2+[s−2(m−2)] = n−t−2m+5,

so our claim is: n ≥ 2t+ 2m− 4. Using Lemma 1 we see that it suffices to have (m− 1)t+ 2 ≥ 2t+ 2m− 4,

or: (m− 3)(t− 2) ≥ 0, so our assumptions m ≥ 3, t ≥ 2 suffice.

Lemma 9

Let ε ∈ {0, 1}N be t-acceptable, H = Gε, and suppose H is a subgraph of the T -free graph G. If

C1 ∈ XH and C2 ∈ XG, with NG(C1, C2) > 0 or NG(C2, C1) > 0, then C2 ∈ XH .

Proof :

Let w ∈ Γ(C1) ∩ Γ(C2) in G. As C1 is tightly embedded in H , w ∈ H . There is a tightly embedded

clique C of order s in H with {|Γ(w) ∩ C1|, |Γ(w) ∩ C|} = {1,m− 2} or {m− 2, 1}. Lemma 6 applies in G

and forces C2 = C ∈ XH .

Lemma 10

Let G be a countable T -free graph. Then there are only countably many t-acceptable sequences ε ∈

{0, 1}N for which Gε embeds in G as a subgraph.

Proof :

We make XG into a graph by setting E(C1, C2) iff N(C1, C2) > 0 or N(C2, C1) > 0. By the previous

lemma if Gε embeds into G as a subgraph then the image of XGε
in XG is a connected component of this

graph. Furthermore NGε
will be the restriction of NG to this component, and ε can be recovered from NGε

.

As XG is countable, the claim follows.

The theorem as stated in the introduction follows. As noted at the outset, the proof given is valid for

t ≥ 2, and the excluded case t = 1 is completely straightforward.
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