GRAPHS OMITTING A BUSHY TREE

BY
G. Cherlin ${ }^{1}$
Dept. Mathematics, Rutgers University, Hill Center, Busch Campus, New Brunswick, NJ 08903
AND
N. SHI^{2}
Dept. Mathematics, East Stroudsburg University, East Stroudsburg, PA 18301
AND
L. TALLGREN
ABSTRACT

A tree is called bushy if it has no vertex of degree 2. Theorem: the class of countable graphs omitting a fixed bushy tree has no universal element.

Introduction

Rado observed $[\mathrm{R}]$ that there is a universal countable graph, that is a countable graph G such that every countable graph is isomorphic to an induced subgraph of G. Many similar problems have been considered in the literature, involving a wide range of classes of graphs, and frequently set theoretic complications are involved. We have chosen to focus on a form of the general problem that can be construed as an algorithmic problem: given a finite set \mathcal{C} of finite connected graphs, does the class of countable graphs which omit \mathcal{C} contain a universal element? Here we say that a graph G omits a class \mathcal{C} of graphs if none of the graphs in \mathcal{C} is isomorphic to a subgraph of G (a much more stringent condition than omission of these graphs as induced subgraphs). The problem in general is to characterize the classes \mathcal{C} for which there is such a universal graph, or at least to establish that there is an algorithm which will produce the answer in each case. This problem remains open when \mathcal{C} consists of a single element, though this is by far the best understood case: graphs omitting a single "forbidden subgraph".

It is an immediate consequence of Fraïssé's theory [F] that if \mathcal{C} consists of a single complete graph then the corresponding class of countable graphs has a universal element. Füredi and Komjáth have shown [FK] that the class of countable graphs omitting a given incomplete, 2-connected graph A has no universal element. This remarkably general result was arrived at by stages; the case of a cycle of order 4 was treated in $[\mathrm{P}]$, the case of general cycles was handled in [CK] (and finite sets of finite cycles are handled completely by combining [KMP] and [CS]), while complete bipartite graphs are treated in [KP]. The method is more or

1. Research supported in part by NSF grant DMS 9501176
2. Research supported in part by ESU grant FDR 199571
less the same in all cases, going right back to the case of the cycle of order 4, but very substantial difficulties arise as one attempts to carry it out in general.

The general graph can be analyzed in terms of its blocks, which is to say, roughly speaking, as a tree of (mainly) 2-connected blocks meeting in single vertices. In view of the Füredi/Komjath result, this suggests that an analysis of graphs omitting a given tree would cast some complementary light on the situation. The simplest case of this, graphs omitting a given finite path, is elegantly analyzed in [KMP], and yields a positive result: there is a universal object in all such cases, because there is a structure theory for this class. Work of the third author, to be included in his doctoral dissertation, shows that this structure theory is valid somewhat more generally in a form which can be used to solve positively a number of related problems, and in particular to provide a positive answer for trees formed from a path by attaching one more vertex. There is a certain amount of evidence suggesting that in all other cases, there is no universal graph omitting the given tree.

Conjecture [Tallgren]

Let T be a tree of order n, and \mathcal{G} the class of countable graphs omitting T. Then \mathcal{G} has a universal element if and only if the tree T contains a path of order $n-1$.

This paper will provide some of the evidence for this conjecture; some additional evidence will be noted below. We call a tree bushy if it has no vertex of degree 2 . Given a tree T, we say that a graph G is T-free if it omits T, that is T does not embed in G as a subgraph.

Theorem

Let T be a finite bushy tree with at least 5 vertices. Then the class of T-free countable graphs has no universal element. More specifically, there is a collection of $2^{\aleph_{0}} T$-free graphs such that at most countably many of them embed into any single countable T-free graph.

Theoretical considerations which it would be too tedious to detail here suggest that the presence of vertices of degree 2 introduces an additional set of complications. The proof we give here involves certain subtleties that disappear if one is willing to sacrifice much of the generality of the result.

Scholium

Let T be a finite bushy tree, and let m be the minimal degree of a vertex of T, other than the leaves. If there is a vertex of T which has degree m and is adjacent to a leaf, then there is a collection of $2^{\aleph_{0}} T$-free graphs H such that H is a connected component of any T-free graph containing it.

In our proof of the theorem it will be seen that we arrive at a situation strictly parallel to the situation described in the scholium, but at a slightly higher level of abstraction. The subtleties involved in dealing with vertices of degree 2 seem to be of a rather more serious nature, though we feel that the overall situation will probably turn out to be analogous, if these subtleties are mastered.

Other evidence for the conjecture stated above concerns generalized stars, which are trees containing only one vertex of degree greater than 2 , and bridges, which are trees consisting of a single path which forks at both ends (so there are two vertices of degree greater than 2 , both of which have degree 3 and are adjacent to two leaves). There is no universal countable graph omitting a given bridge [GK], and the result for generalized stars conforms to the stated conjecture; the proof is expected to be included in the third author's doctoral dissertation.

We are grateful to Brenda Latka for her useful comments on an early draft of this paper.

The following notation will be fixed throughout.
T is a bushy tree with at least two nonleaves (vertices of degree greater than 1).
$n=|T|$.
T_{1} is the set of nonleaves of T which are adjacent to at least one leaf of $T . T_{2}$ is the subtree of T whose vertices are the nonleaves of T.
$t=\left|T_{1}\right|$
m is the minimal degree of a nonleaf of T (so $m \geq 3$); m_{1} is the minimal degree in T of a vertex of T_{1}.
$s=n-t-1$
The argument that follows will not work if T_{1} contains only one vertex. In this case T is a star and a T-free graph is a graph of maximal degree at most $n-2$. It is easy to see in this case that there is a universal countable T-free graph if and only if n is at most 4 . We will assume therefore that $t \geq 2$.

We remark that for any tree T, the order of T equals:

$$
2+\sum_{v \in V(T)}(\operatorname{deg}(v)-1),
$$

and hence with the notation above:

Lemma 1

$n \geq t\left(m_{1}-1\right)+2 \geq t(m-1)+2$
We use the notation $\Gamma(v)$ for the set of neighbors of v in a given graph, and occasionally we write $\Gamma(A)$ for $\bigcup_{v \in A} \Gamma(v)-A$, which we refer to as the set of neighbors of A. Cliques are the vertex sets of complete subgraphs of a specified graph.

§1. Tight embedding

We keep the notation established in the introduction. Our main tool is the following technical notion.

Definition 1

Let G be T-free, A a clique of order s. Then A is tightly embedded in G if there is a partition of A into nonempty subsets A_{1}, \ldots, A_{k} and a set of distinct vertices w_{1}, \ldots, w_{k} in $G-A$ such that:

1. $A_{i} \subseteq \Gamma\left(w_{i}\right)$;
2. $k>t$.

The significance of the parameter s can be seen in the proof of the following result, and again in the proof of Lemma 8.

Lemma 2

If G is T-free and A is a tightly embedded clique of order s in G, then the sets $\Gamma(v) \cap A$ for $v \in \Gamma(A)$ partition A. In other words, the vertices w_{1}, \ldots, w_{k} referred to in the definition of tight embedding must exhaust the neighbors of A, and we have $A_{i}=\Gamma\left(w_{i}\right) \cap A$ for all $i \leq k$.

Proof:
If this is not the case then for some $i \leq k$ and for some $v \in A_{i}, \Gamma(v)-A$ contains a vertex $w \neq w_{i}$. As a matter of notation we may take $i=t+1$ and we may suppose that $w \notin\left\{w_{1}, \ldots, w_{t-1}\right\}$. We will produce a contradiction by embedding T in G. We enumerate the vertices of T_{1} as v_{1}, \ldots, v_{t} in such a way that v_{t} is
adjacent to at least two leaves of T. We define a partial embedding f of T into G whose domain consists of v_{1}, \ldots, v_{t} together with one leaf adjacent to each of v_{1}, \ldots, v_{t-1}, and two leaves adjacent to v_{t}; the vertices v_{i} are mapped into A_{i} for $i \leq t-1$ and v_{t} maps to v, while the leaf selected adjacent to v_{i} maps to w_{i} for $i \leq t-1$, and the two leaves selected adjacent to v_{t} map to w and w_{t+1}. At this point the domain of f consists of $2 t+1$ points and its range meets A in t points, so there remain $n-(2 t+1)$ vertices in T to map into $s-t$ vertices of A, and since $s-t=n-(2 t+1)$, there is such an extension of f. Since A is a clique, any such extension of f is an embedding of T into G.

Corollary

Let G be a T-free graph, H a subgraph, and A a clique of order s which is tightly embedded in H. Then A is tightly embedded in $G, \Gamma(A)$ is the same whether computed in H or in G, and G and H contain the same edges joining A to $\Gamma(A)$.

Proof:
The first statement is immediate on the basis of the definition of tight embedding. The second then follows from Lemma 2.

Lemma 3

Let G be a T-free graph, $A \subseteq G$ a tightly embedded clique of order s, and $C \subseteq G$ any clique of order s which meets A. Then $C=A$.

Proof:
As $C \subseteq \Gamma(A) \cup A$, Lemma 2 implies that $C-A$ contains at most one vertex. Now if $C-A$ contains a vertex v, then as $\Gamma(v)$ meets A in $s-1$ points, Lemma 2 implies that A has at most two neighbors, a contradiction as we have assumed $t \geq 2$ and $|\Gamma(A)|>t$.

Lemma 4

Suppose that the bushy tree T has a vertex $w_{0} \in T_{1}$ of degree m. Let G be a T-free graph, A and B cliques of order s with A tightly embedded in G, and w a vertex outside $A \cup B$ with $|\Gamma(w) \cap A| \geq m-2$ and $|\Gamma(w) \cap B| \geq 1$. Then $|\Gamma(w)|=m-1$.

Proof:
Assuming $\Gamma(w) \geq m$, we will embed T in G. Select $X \subseteq \Gamma(w) \cap A$ with $|X|=m-2, b \in \Gamma(w) \cap B$, and $v \in \Gamma(w)-(X \cup\{b\})$. Also fix a leaf v_{0} of T adjacent to w_{0}. Let T^{\prime} be a connected component of $T-\left\{v_{0}, w_{0}\right\}$ whose order is maximal subject to $\left|T^{\prime}\right| \leq(n-1) / 2$ (there is at most one component of $T-\left\{v_{0}, w_{0}\right\}$ not satisfying this condition). Note that if T^{\prime} does not consist of just one leaf of T, then we have $\left|T^{\prime}\right| \geq m$

In order to embed T into G we first send v_{0}, w_{0} to v, w respectively. We will embed T^{\prime} into B, using b for the neighbor of w_{0} in T^{\prime}. We will then embed the rest of T into $A \cup \Gamma(A)$. There are various points to be checked.

In the first place we must show that the embedding of T^{\prime} into B is possible, or in other words that $\left|T^{\prime}\right| \leq s$. As $\left|T^{\prime}\right| \leq(n-1) / 2$ and $s=n-t-1$ this reduces to: $n \geq 2 t+1$. As $m \geq 3$ this follows from Lemma 1. Now fix such an embedding f_{0} of $T^{\prime} \cup\left\{v_{0}, w_{0}\right\}$ into $B \cup\{v, w\}$.

In the second place we must extend f_{0} to the remaining vertices of T. The remaining neighbors of w_{0} in T will be mapped into X. Let $t_{0}=\left|T_{1}-\Gamma\left(w_{0}\right)\right|$. Choose distinct vertices $w_{1}, \ldots, w_{t_{0}}$ in $\Gamma(A)-\{w\}$ and vertices $v_{i} \in \Gamma\left(w_{i}\right) \cap A$. Let f_{1} be an extension of f_{0} which sends the vertices in $T_{1}-\Gamma\left(w_{0}\right)$ to the v_{i}
for $1 \leq i \leq t_{0}$ and which sends one leaf adjacent to each such vertex to the corresponding vertex w_{i}. The domain of f_{1} has $2 t_{0}+(m-2)+2+\left|T^{\prime}\right|$ elements, and the range meets A in $t_{0}+(m-2)$ elements, so to extend f_{1} to all of T we require:

$$
n-\left(2 t_{0}+(m-2)+2+\left|T^{\prime}\right|\right) \leq s-\left(t_{0}+(m-2)\right)=n-t-1-\left(t_{0}+(m-2)\right)
$$

This reduces to $t \leq t_{0}+1+\left|T^{\prime}\right|$. But $t_{0} \geq t-m$ and if $\left|T^{\prime}\right|>1$ then $\left|T^{\prime}\right| \geq m$, as noted earlier, and the desired inequality certainly holds. On the other hand if $\left|T^{\prime}\right|=1$, then the maximal choice of T^{\prime} (with at most one exceptional component) implies that w_{0} is adjacent to at most one nonleaf. In this case $t_{0} \geq t-1$ and again the required inequality holds.

Dropping our special hypothesis on T, we get a weaker result.

Lemma 5

Let G be a T-free graph, A and B cliques of order s with A tightly embedded in G, and w a vertex outside $A \cup B$ with $|\Gamma(w) \cap A| \geq m-2$ and $|\Gamma(w) \cap B| \geq 1$. Then $|\Gamma(w) \cap(A \cup B)|=m-1$.

Proof:
If there is a vertex in T_{1} of degree m in T then the result of the previous lemma is stronger. Suppose therefore that every vertex of T_{1} has degree greater than m, and in particular has degree at least 4 . Then Lemma 1 says:

$$
\begin{equation*}
n \geq 3 t+2 \tag{1}
\end{equation*}
$$

We must show that if $|\Gamma(w) \cap B| \geq 2$ or $|\Gamma(w) \cap A| \geq m-1$, then we can construct an embedding of T into G.

Suppose first that $|\Gamma(w) \cap B| \geq 2$. Then we choose w_{0} a vertex of T of order m, and components $T^{\prime}, T^{\prime \prime}$ of $T-\left\{w_{0}\right\}$ of minimal order; then $\left|T^{\prime}\right|+\left|T^{\prime \prime}\right| \leq(2 / 3)(n-1)$ since there are at least three components. To embed T into G, first send w_{0} to w and embed $T^{\prime}, T^{\prime \prime}$ into B with the vertices adjacent to w_{0} mapped to two vertices of B adjacent to w. For this we need $\left|T^{\prime}\right|+\left|T^{\prime \prime}\right| \leq s$, which follows from (1). Now to complete the embedding we again use A together with t_{0} neighbors of A, where $t_{0}=\left|T_{1}-\Gamma\left(w_{0}\right)\right|$. As in the previous lemma, to complete this we require the estimate:

$$
n-\left(2 t_{0}+(m-2)+1+\left|T^{\prime}\right|+\left|T^{\prime \prime}\right|\right) \leq s-\left(t_{0}+(m-2)\right)
$$

which reduces to: $t \leq t_{0}+\left|T^{\prime}\right|+\left|T^{\prime \prime}\right|$. Now as $m<m_{1}$, the vertex w_{0} is not adjacent to a leaf and $T^{\prime}, T^{\prime \prime}$ are not leaves, and since $t_{0} \geq t-m$ our inequality holds.

Now suppose that $|\Gamma(w) \cap A| \geq m-1$. In this case we embed one component T^{\prime} of $T-\left\{w_{0}\right\}$ into B (respecting the adjacency with w_{0}), where $\left|T^{\prime}\right| \leq n / 2$. With $t_{0}=\left|T_{1}-\Gamma\left(w_{0}\right)\right|$ the final estimate required to complete the embedding using $A \cup \Gamma(A)$ will be: $n-\left(2 t_{0}+(m-1)+1+\left|T^{\prime}\right|\right) \leq s-\left(t_{0}+(m-1)\right)$, or $t \leq t_{0}+\left|T^{\prime}\right|$. This holds, as before, since $\left|T^{\prime}\right| \geq m$.

Lemma 6

Let G be a T-free graph, A and B two disjoint cliques of order s which are tightly embedded in G, and w a vertex in $\Gamma(A)$ with $|\Gamma(w) \cap A|=1,|\Gamma(w) \cap B|=m-2$. Then for any clique C of order s contained in G, if $w \in \Gamma(C)$ then $C=A$ or $C=B$.

Proof:
If C meets A or B then our result follows by Lemma 3. If $m=m_{1}$ the result follows by Lemma 4. If C is disjoint from $A \cup B$ and $m<m_{1}$ then we can easily embed T in G, by a variant of the construction in the proof of the previous lemma, in the case $|\Gamma(w) \cap B| \geq 2$.

§2. A construction

As motivation for the construction that follows, we first indicate a "decoding" procedure that extracts some relevant structure from an arbitrary T-free graph (specifically, we are decoding some of the structure of the algebraic closure operator in the model theoretic sense, but it is not necessary to go into this).

Definition 3

Let G be a T-free graph.
X_{G} is the set of cliques of order s which are tightly embedded in G.
$N_{G}: X_{G}^{2} \longrightarrow \mathbb{N}$ is defined as follows. For $C_{1}, C_{2} \in X_{G}, N_{G}\left(C_{1}, C_{2}\right)$ is the cardinality of the following set:

$$
\left\{w \in \Gamma\left(C_{1} \cup C_{2}\right):\left|\Gamma(w) \cap C_{1}\right|=m-2,\left|\Gamma(w) \cap C_{2}\right|=1\right\}
$$

Lemma 7

If G is a T-free graph and H is a subgraph (not necessarily an induced subgraph), then $X_{H} \subseteq X_{G}$ and N_{H} is the restriction of N_{G} to X_{H}.

Proof:
This is all contained in the corollary to Lemma 2.
Now we describe the construction of a large number of T-free graphs for which the associated structures (X_{G}, N_{G}) will be seen to be incompatible in a sense that yields the main result.

Construction

Let $\varepsilon \in\{0,1\}^{\mathbb{N}}$.

1. We define a notion of t-acceptability. If $t>2$ then any ε in $\{0,1\}^{\mathbb{N}}$ is t-acceptable. If $t=2$ then ε is t-acceptable if and only if there is no $k \in \mathbb{N}$ with $\varepsilon(k)=\varepsilon(k+1)=1$.
2. For ε a t-acceptable sequence, we construct a labeled rooted tree T_{ε} (inductively, by levels) as follows. The labels will be 0,1 , or 2 . The root of the tree carries the label 0 . For $k \in \mathbb{N}$, any vertex at level k with label l has $s-\varepsilon(k)-l(m-2)$ successors (a positive number, as we shall see momentarily) at level $k+1$. If $\varepsilon(k)=0$ these successors all carry the label 1 , and otherwise one of them carries the label 2 and the remainder carry the label 1 . In particular when $t=2$ we will never have $\varepsilon(k)=1$ at the same time that the label is 2 . Using Lemma 1 we find that

$$
s-\varepsilon(k)-l(m-2) \geq t(m-2)+1-\varepsilon(k)-l(m-2)=(t-l)(m-2)+(1-\varepsilon(k))
$$

and this is positive since either $t>l$ or else $t=l=2$, in which case $\varepsilon(k)=0$.
3. From the tree T_{ε} we construct a T-free graph G_{ε} as follows. Let G_{ε}° be the disjoint sum of complete graphs K_{v} of order s, for $v \in V\left(T_{\varepsilon}\right)$, and $C_{v}=V\left(K_{v}\right)$. We extend G_{ε}° as follows. If u, v are successive vertices of T_{ε} and v carries the label l, then l vertices w are introduced satisfing: $\left|\Gamma(w) \cap C_{u}\right|=1 ;\left|\Gamma(w) \cap C_{v}\right|=m-2$. Furthermore we require that whenever w_{1}, w_{2} are neighbors of the clique C_{v}, then $\Gamma\left(w_{1}\right) \cap C_{v}$ and $\Gamma\left(w_{2}\right) \cap C_{v}$ are disjoint. Observe in this connection that if v has the label l, then C_{v} has l neighbors each of which is adjacent to $m-2$ vertices of C_{v}, and $s-l(m-2)$ neighbors each of which is adjacent to one vertex of C_{v}, so that we may take the sets $\Gamma(w) \cap C_{v}$ to partition C_{v} as w runs over the neighbors of C_{v}.

Lemma 8

If $\varepsilon \in\{0,1\}^{\mathbb{N}}$ is t-acceptable then the associated graph G_{ε} is T-free and the cliques C_{v} for v a vertex of T_{ε} are tightly embedded in G_{ε}.

Proof:
We show first that G_{ε} is T-free. The vertices not in the cliques C_{v} are of degree $m-1$. Hence in any embedding f of T into G_{ε} the vertices of T_{2} must map into various cliques C_{v}, and since T_{2} is connected they must map into a single clique C_{v} and T maps into $C_{v} \cup \Gamma\left(C_{v}\right)$. As the sets $\Gamma(w) \cap C_{v}\left(w \in \Gamma\left(C_{v}\right)\right)$ partition C_{v}, the range of f contains at most t vertices in $\Gamma\left(C_{v}\right)$. This means we have mapped n vertices injectively into at most $s+t=n-1$ vertices, a contradiction.

To check that C_{v} is tightly embedded, one point remains: we must check that C_{v} has at least $t+1$ neighbors. According to our construction the minimal number of neighbors is $2+[s-2(m-2)]=n-t-2 m+5$, so our claim is: $n \geq 2 t+2 m-4$. Using Lemma 1 we see that it suffices to have $(m-1) t+2 \geq 2 t+2 m-4$, or: $(m-3)(t-2) \geq 0$, so our assumptions $m \geq 3, t \geq 2$ suffice.

Lemma 9

Let $\varepsilon \in\{0,1\}^{\mathbb{N}}$ be t-acceptable, $H=G_{\varepsilon}$, and suppose H is a subgraph of the T-free graph G. If $C_{1} \in X_{H}$ and $C_{2} \in X_{G}$, with $N_{G}\left(C_{1}, C_{2}\right)>0$ or $N_{G}\left(C_{2}, C_{1}\right)>0$, then $C_{2} \in X_{H}$.

Proof:
Let $w \in \Gamma\left(C_{1}\right) \cap \Gamma\left(C_{2}\right)$ in G. As C_{1} is tightly embedded in $H, w \in H$. There is a tightly embedded clique C of order s in H with $\left\{\left|\Gamma(w) \cap C_{1}\right|,|\Gamma(w) \cap C|\right\}=\{1, m-2\}$ or $\{m-2,1\}$. Lemma 6 applies in G and forces $C_{2}=C \in X_{H}$.

Lemma 10

Let G be a countable T-free graph. Then there are only countably many t-acceptable sequences $\varepsilon \in$ $\{0,1\}^{\mathbb{N}}$ for which G_{ε} embeds in G as a subgraph.

Proof:
We make X_{G} into a graph by setting $E\left(C_{1}, C_{2}\right)$ iff $N\left(C_{1}, C_{2}\right)>0$ or $N\left(C_{2}, C_{1}\right)>0$. By the previous lemma if G_{ε} embeds into G as a subgraph then the image of $X_{G_{\varepsilon}}$ in X_{G} is a connected component of this graph. Furthermore $N_{G_{\varepsilon}}$ will be the restriction of N_{G} to this component, and ε can be recovered from $N_{G_{\varepsilon}}$. As X_{G} is countable, the claim follows.

The theorem as stated in the introduction follows. As noted at the outset, the proof given is valid for $t \geq 2$, and the excluded case $t=1$ is completely straightforward.

References

[CK] G. Cherlin and P. Komjáth, There is no universal countable pentagon-free graph, J. Graph Theory 18 (1994), 337-341.
[CS] G. Cherlin and N. Shi, Graphs omitting a finite set of cycles, to appear in J. Graph Theory.
[F] R. Fraïssé, Sur l'extension aux relations de quelques propriétés connues des ordres, C. R. Acad. Sci. Paris 237 (1953), 508-510. MR 57 \#16042.
[FK] Z. Füredi and P. Komjáth, On the existence of countable universal graphs, preprint, 1994.
[KMP] P. Komjáth, A. Mekler, and J. Pach, Some universal graphs, Israel J. Math. 64 (1988), 158-168.
[GK] M. Goldstern and M. Kojman, Universal bridge free graphs, preprint, 1994.
[KP] P. Komjáth and J. Pach, Universal graphs without large bipartite subgraphs, Mathematika, 31 (1984), 282-290.
[P] J. Pach, A problem of Ulam on planar graphs, Enr. J. Comb. 2 (1981), 357-361.
[R] R. Rado, Universal graphs and universal functions, Acta Arith. 9 (1964), 331-340.

