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1 Introduction

The Cherlin-Zil’ber conjecture states that an infinite simple group of finite Morley rank is an
algebraic group over an algebraically closed field. The proofs of the following three conjectures
would provide a proof of the Cherlin-Zil’ber conjecture:

Conjecture 1 There exist no nonsolvable connected groups of finite Morley rank all of whose
proper definable connected subgroups are nilpotent; such groups are called bad groups.

Conjecture 2 There exists no structure ⟨K,+, ·, A⟩ of finite Morley rank where K is an alge-
braically closed field and A is an infinite proper definable subgroup of the multiplicative group
of K; such structures are called bad fields.

Conjecture 3 A simple group of finite Morley rank which does not have definable bad sections
and in which no bad fields are interpretable is an algebraic group over an algebraically closed
field.

The first conjecture appears to be very difficult, and the state of the second conjecture is
unclear, but in the last decade it has become clear that ideas from finite group theory are very
helpful for the classification of the simple groups of finite Morley rank satisfying the properties
stated in Conjecture 3, namely tame groups. Indeed, the first step towards the solution of
Conjecture 3 is an idea from finite group theory. One analyzes a minimal counterexample,
which in the context of groups of finite Morley rank means an example “of minimal rank”.
Infinite, proper, definable, simple sections of such a counterexample are then algebraic groups
over algebraically closed fields. We make the following definitions for our convenience:

Definition 1.1 A group of finite Morley rank whose infinite, definable, simple sections are
algebraic groups over algebraically closed fields is called a K-group.

Definition 1.2 A group of finite Morley rank whose proper, definable subgroups are K-groups
is called a K∗-group.

Conjecture 3 would follow from the following conjecture:

Conjecture 3′ An infinite, simple, tame K∗-group of finite Morley rank is an algebraic group
over an algebraically closed field.

Another reason why finite group theoretic ideas seem to be relevant in the context of tame
groups of finite Morley rank is the impact of involutions on the structure of these groups. The
following facts illustrates this principle:

Fact 1.3 ([7], [10], [9], [18]) Bad groups do not have involutions.

Fact 1.4 ([6]) Let G be a connected, tame, K∗-group of finite Morley rank. Then any connected
definable section of G which does not have involutions is nilpotent.

In order to attack Conjecture 3′, one expects to follow the lead of finite group theory in
analyzing the centralizers of involutions. As part of this analysis it is important to understand
the structure of the Sylow 2-subgroups of a group of finite Morley rank. The main result in
this direction is the following theorem of Borovik and Poizat (for the notation S◦ below cf.
Definition 2.6):

Fact 1.5 ([8]) If S is a Sylow 2-subgroup of a group of finite Morley rank then the following
hold:

i) S is nilpotent by finite.
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ii) S◦ = B ∗ T is a central product of a definable, connected, nilpotent subgroup B of bounded
exponent and a divisible, abelian 2-group T . Moreover, B and T are uniquely determined.

It is helpful to compare the situation in Fact 1.5 to that of algebraic groups over algebraically
closed fields. algebraic groups are defined over an algebraically closed base field K whose
characteristic has a strong impact on the structure of the Sylow 2-subgroups. If char(K) = 2
then the Sylow 2-subgroups are nilpotent and of bounded exponent; if char(K) ̸= 2 then the
Sylow 2-subgroups are (divisible abelian)-by-finite. Consider for example SL2(K), where K
is an algebraically closed field. If char(K) = 2 then any Sylow 2-subgroup of the group is
isomorphic to the additive group K+, e.g.:{(

1 u
0 1

)
: u ∈ K+

}
.

On the other hand, if char(K) ̸= 2 then the Sylow 2-subgroups are isomorphic to K∗ ⋊ Z/2Z
with Z/2Z acting by inversion, e.g.:{(

λ 0
0 λ−1

)
: λ ∈ K∗, λ2

n

= 1

}
⋊

〈(
0 −1
1 0

)〉
.

Using the terminology in Fact 1.5, one can say that in algebraic group, either B = 1 or
T = 1. In the context of groups of finite Morley rank, the general picture is somewhat different.
For example, if K1 is an algebraically closed field with char(K1) = 2 and K2 is an algebraically
closed field with char(K2) ̸= 2 then SL2(K1) × SL2(K2) is a group of finite Morley rank
(although not an algebraic group) each of whose Sylow 2-subgroups is isomorphic to the direct
sum of a Sylow 2-subgroup of SL2(K1) and a Sylow 2-subgroup of SL2(K2). Therefore, in
a group of finite Morley rank, the Sylow 2-subgroups are in general a mix of the possibilities
which arise in algebraic groups. Accordingly, the following definitions are natural:

Definition 1.6 A group of finite Morley rank is said to be of even type if its Sylow 2-subgroups
are of bounded exponent.

A group of finite Morley rank is said to be of odd type if the connected component of any
Sylow 2-subgroup is divisible abelian.

A group of finite Morley rank is said to be of mixed type if it is not of one of the above
types.

If the Cherlin-Zilber Conjecture is true, then there should be no simple group of finite Morley
rank of mixed type:

Conjecture 3A A simple group of finite Morley rank cannot be of mixed type.

We prove the following special case, which is the version that will actually be needed in the
context of Conjecture 3′.

Theorem 1.7 There exists no simple, tame, K∗-group of finite Morley rank of mixed type.

Thus Conjecture 3′ splits into two parts, which can be considered independently:

Conjecture 3′E An infinite, simple, tame K∗-group of finite Morley rank of even type is an
algebraic group over an algebraically closed field of even characteristic.

Conjecture 3′O An infinite, simple, tame K∗-group of finite Morley rank of odd type is an
algebraic group over an algebraically closed field of characteristic different from 2.

The proof of Theorem 1.7 is by contradiction. We analyze a simple, tame, K∗-group G of
mixed type. There are two main steps in this analysis. We first show that G has a weakly
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embedded subgroup. The second main step of our analysis allows us to conclude that this weakly
embedded subgroup is a strongly embedded subgroup. This yields a contradiction because groups
of finite Morley rank with strongly embedded subgroups cannot be of mixed type. The notions
of weakly and strongly embedded subgroups are defined in Sections 3 and 7 respectively.

Both the construction of a weakly embedded subgroup and the proof of the fact that this
is a strongly embedded subgroup require a detailed analysis of some special proper, definable
subgroups of G. These subgroups, which are necessarily K-groups, constitute the parts of G
that are of “even type” or “odd type”. While analyzing these subgroups we will encounter
central extensions of quasi-simple algebraic groups which are perfect tame groups H of finite
Morley rank. We prove that in such cases H is itself an algebraic group. It seems this result
will be useful in the analysis of K-groups arising in other situations as well.

The organization of the paper is as follows: in the next section we review the background
results which we need. In Section 3 we begin the discussion of groups of finite Morley rank
with weakly embedded subgroups. Section 4 is devoted to central extensions. In Section 5 we
analyze the “even” and “odd” parts of G and the interactions between these parts. In Section
6 we find a weakly embedded subgroup in G. The final section, Section 7, contains the proof
of the result that the weakly embedded subgroup of Section 6 is strongly embedded. Section
7 also contains the results about strongly embedded subgroups which imply that this second
main step of the proof yields a contradiction.
Acknowledgements: The authors would like to thank Ali Nesin for carefully reading the
paper and correcting some errors.

2 Background

In this section we list various facts needed in the sequel. For any subset X of any group G,
I(X) will be used to denote the set of involutions in X. If t ∈ G then Ct = CG(t).

Definition 2.1 Let G be a group of finite Morley rank. A subgroup H of G is definably char-
acteristic if it is invariant under definable group automorphisms.

In the sequel, characteristic will mean definably characteristic.

Fact 2.2 ([6], Exercise 10 page 78) Let G be a group of finite Morley rank. G◦ contains all
connected definable subgroups of G.

Proof. See the hints on page 78 of [6]. □

Fact 2.3 ([26]) Let G be a group of finite Morley rank. The subgroup generated by a set of
definable connected subgroups of G is definable and connected and it is the setwise product of
finitely many of them.

Fact 2.4 ([26]) Let H ≤ G be a definable connected subgroup. Let X ⊆ G be any subset. Then
the subgroup [H,X] is definable and connected.

Fact 2.5 ([26]) Let G be a group of finite Morley rank. Then Gn and G(n) are definable. If G
is connected, then Gn and G(n) are connected.

Definition 2.6 Let G be a group of finite Morley rank. If X ⊆ G, then the definable closure
of X, denoted by d(X) is the intersection of all the definable subgroups of G which contain X.
Note that, as groups of finite Morley rank satisfy the descending chain condition on definable
subgroups, this intersection is finite and therefore definable. If X is a subgroup of G then the
connected component of X, denoted by X◦, is defined to be X ∩ d(X)◦.

Fact 2.7 ([6], Lemma 5.34) Let G be a group of finite Morley rank. Assume X ≤ G. Then
CG(X) = CG(d(X)).

Proof. d(X) ≤ Z(CG(X)). □
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Fact 2.8 ([6], Lemma 5.36) Let G be a group of finite Morley rank. If B is a definable
normal subgroup of G and B ⊆ X ⊆ G, then d(X/B) = d(X)/B.

Fact 2.9 ([6], Corollary 5.38) Let G be a group of finite Morley rank and H be a subgroup
of G. If H is solvable (resp. nilpotent) of class n, then d(H) is solvable (resp. nilotent) of class
exactly n.

Fact 2.10 ([15]) Let G be an abelian group of finite Morley rank. Then the following hold:

i) G = D ⊕B where D is a divisible subgroup and B is a subgroup of bounded exponent.

ii) D ∼= ⊕p prime(⊕IpZp∞)⊕⊕IQ where the index sets Ip are finite.

iii) G = DC where D and C are definable characteristic subgroups of G, D is divisible, C has
bounded exponent and their intersection is finite. The subgroup D is connected If G is
connected, then C can be taken to be connected.

Fact 2.11 ([22]) Let G be a nilpotent group of finite Morley rank. Then G = D ∗C, where D
and C are definable characteristic subgroups of G, D is divisible, and C is of bounded exponent.

Fact 2.12 ([22]) Let G be a divisible nilpotent group of finite Morley rank. Let T be the
torsion part of G. Then T is central in G and G = T ⊕ N for some torsion-free divisible
nilpotent subgroup N .

Fact 2.13 ([6], Lemma 6.2) If G is an infinite nilpotent group of finite Morley rank then
Z(G) is infinite.

Fact 2.14 ([6], Lemma 6.3) Let G be a nilpotent group of finite Morley rank . If H < G is
a definable subgroup of infinite index then NG(H)/H is infinite.

Definition 2.15 Let G be a group of finite Morley rank. Let σ(G) be the subgroup generated by
all the normal solvable subgroups of G, and F (G) be the subgroup generated by all the normal
nilpotent subgroups of G. σ(G) is called the solvable radical of G. F (G) is called the Fitting
subgroup of G.

Fact 2.16 ([1, 21]) Let G be a group of finite Morley rank. Then F (G) and σ(G) are definable,
and they are nilpotent and solvable respectively.

Fact 2.17 ([27]) Let G = A⋊H be a group of finite Morley rank where A and H are infinite
definable abelian subgroups and A is H-minimal. Assume CH(A) = 1. Then the following hold:

i) The subring K = Z[H]/annZ[H](A) of End(A) is a definable algebraically closed field; in

fact, there is an integer l such that every element of K can be represented as the endomorphism∑l
i=1 hi, where (hi ∈ H).
ii) A ∼= K+, H is isomorphic to a subgroup T of K∗ and H acts on A by multiplication, in

other words:

G = A⋊H ∼=
{(

t a
0 1

)
: t ∈ T, a ∈ K

}
.

iii) In particular, H acts freely on A, K = T + . . . + T (l times) and with the additive

notation A = {
∑l

i=1 hia : hi ∈ H} for any a ∈ A∗.

Fact 2.18 ([27]) Let G be a connected nonnilpotent solvable group of finite Morley rank. Then
G interprets an algebraically closed field K. More precisely, a definable section of F (G) is
isomorphic to K+ and a definable section of G/F (G) is isomorphic to an infinite subgroup of
K∗.

Fact 2.19 ([20]) Let G be a connected solvable group of finite Morley rank. Then G/F (G)◦

(hence, G/F (G)) is a divisible abelian group.
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Fact 2.20 ([12]) Let G be a nilpotent group. For a given prime p, G has a unique Sylow
p-subgroup. If all elements of G are of finite order then G is the direct sum of its Sylow p-
subgroups.

Fact 2.21 ([6], Exercises 11, 12 pages 13, 14) If G is a nilpotent by finite p-group. Then
the following hold:

i) Z(G) ̸= 1.

ii) If H is a nontrivial normal subgroup of G then Z(G) ∩H ̸= 1.

iii) For any X < G, X < NG(X); that is, G satisfies the normalizer condition.

Proof. See [16]. □

Fact 2.22 ([4]) Let G be group of finite Morley rank and H be a definable normal subgroup of
G. If x is an element of G such that x is a p-element of G = G/H then the coset xH contains
a p-element. In particular, if G is torsion-free, then G/H is torsion-free.

Definition 2.23 For any prime number p, a p⊥-element g is an element whose order is either
infinite or relatively prime to p. A p′-element is an element of finite order relatively prime to
p.

Fact 2.24 ([6], Exercise 11 page 72) Let G be a p⊥-group of finite Morley rank, where p is
a prime number. Then G is p-divisible.

Proof. See [16]. □

Fact 2.25 ([6], Exercise 12 page 72) Let G a p⊥-group of finite Morley rank. Then every
element of G has a unique pth root.

Proof. Solve the exercise. □

Fact 2.26 ([5]) Let K and L be definable p⊥-subgroups of a group G of finite Morley rank.
Assume K normalizes L. Then KL is also a p⊥-subgroup.

Fact 2.27 ([8]) Let G be a group of finite Morley rank. Let D be a divisible abelian subgroup
of G. Then for every prime p, D has finitely many elements of order p.

Fact 2.28 ([6], Exercise 1 page 97) An infinite nilpotent p-group of finite Morley rank and
of bounded exponent has infinitely many central elements of order p.

Proof. See [16]. □

Definition 2.29 A divisible abelian p-subgroup of a group of a finite Morley rank is called a
p-torus.

Fact 2.30 ([8]) Let T be a p-torus in a group of finite Morley rank. Then [NG(T ) : CG(T )] <
∞. Moreover, there exists c ∈ N such that [NG(T ) : CG(T )] ≤ c for any torus in G.

Fact 2.31 ([8]) The Sylow 2-subgroups of a group of finite Morley rank are conjugate.

Fact 2.32 ([6], Lemma 10.22) Let S and T be as in fact 1.5 . If X, Y ⊆ S◦ and Xg = Y ,
where g ∈ G then there exists h ∈ NG(T ) such that Xh = Y (that is, NG(T ) controls fusion in
S◦).
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Fact 2.33 ([17]) Let G be ω-stable and solvable, N �G, and let H be a Hall π-subgroup of G
for some set π of primes. Then:

i) H ∩N is a Hall π-subgroup of N , and all Hall π-subgroups of N are of this form.

ii) If N is definable then HN/N is a Hall π-subgroup of G/N , and all Hall π-subgroups of G/N
are of this form.

Fact 2.34 ([4]) Let G be a connected solvable group of finite Morley rank. Then the Hall
π-subgroups of G are connected.

A special case of the following fact was proven in [16].

Fact 2.35 Let Y be a connected solvable group of finite Morley rank and S be a Sylow 2-subgroup
of Y . If B is the unique largest unipotent 2-subgroup of S as in Fact 1.5 then B ≤ F (Y ). In
particular, B is a characteristic subgroup of Y .

Proof. By Fact 2.19, Y/F (Y ) is a divisible abelian group. Thus, by Fact 2.27, Y/F (Y ) has
finitely many involutions. On the other hand a nontrivial unipotent 2-subgroup has infinitely
many involutions by Fact 2.28. Therefore, Y/F (Y ) has no nontrivial unipotent 2-subgroups
and this implies B ≤ F (Y ). By Fact 2.20, B is contained in the unique Sylow 2-subgroup of
F (Y ). Therefore, B is characteristic in Y . □

Fact 2.36 ([6]) Let Q and E be subgroups of a group of finite Morley rank such that Q is
normal, 2⊥, connected, nilpotent, definable and E is a definable connected 2-group of bounded
exponent. Then [Q,E]=1.

Fact 2.37 ([19]) Let α be a definable involutive automorphism of a group of finite Morley rank
G. If α has finitely many fixed points then G has a definable normal subgroup of finite index
which is abelian and inverted by α.

Fact 2.38 ([19]) Let α be a definable involutive automorphism of a group of finite Morley rank
G. If α has no nontrivial fixed points then G is abelian and inverted by α.

Fact 2.39 ([6], Theorem 8.4) Let G = G⋊H be a group of finite Morley rank where G and
H are definable, G is an infinite simple algebraic group over an algebraically closed field, and
CH(G) = 1. Then, viewing H as a subgroup of Aut(G), we have H ≤ Inn(G)Γ, where Inn(G)
is the group of inner automorphisms of G and Γ is the group of graph automorphisms of G.

Fact 2.40 ([16]) Let G be a connected nonsolvable K-group of finite Morley rank. Then
G/σ(G) is isomorphic to a direct sum of simple algebraic groups over algebraically closed fields.

In Section 5, we will need the following facts about algebraic group s over algebraically
closed fields. Apart from Fact 2.45, these facts are found in [25], [14] or [13], which are our
main references for the theory of algebraic groups and related subjects.

Definition 2.41 ([14], Section 7.5) Let G be an algebraic group over an algebraically closed
field and M an arbitrary subset of G. A(M) (the group closure of M) is the intersection of all
closed subgroups of G containing M .

Fact 2.42 ([14], Proposition 7.5) Let H be an algebraic group over an algebraically closed
field, I an index set, fi : Xi −→ G (i ∈ I) a family of morphisms from irreducible varieties Xi,
such that each Yi = f(Xi) contains the identity element of G. Set M = ∪i∈IYi. Then:

a) A(M) is a connected subgroup of G.

b) For some finite sequence a = (a(1), · · · , a(n)) in I,

A(M) = Y e1
a(1) · · ·Y

en
a(n) (ei = ±1).
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Fact 2.43 ([14], Theorem 17.6) Let G be a connected solvable subgroup of GL(V ), 0 ̸= V
finite dimensional. Then G has a common eigenvector.

Definition 2.44 Let G be a group of finite Morley rank. O(G) is the largest, definable, con-
nected, normal 2⊥-subgroup of G.

Fact 2.45 ([3]) If H is a simple algebraic group over an algebraically closed field K of char-
acteristic different from 2, and t is an involutive automorphism of H, then F (Ct) = Z(C◦

t ) is
a finite extension of an algebraic torus over K and E(Ct) = L1 · · ·Ln is the central product
of quasi-simple subgroups Li which are algebraic groups over K. In particular, O(Ct) = 1 and
C◦

t = F (Ct)
◦E(Ct).

Fact 2.46 ([25], Corollary to Lemma 15) Let α, β be roots with α + β ̸= 0. Let k be a
field. Then

(xα(t), xβ(t)) =
∏

xiα+jβ(cijt
iuj)

where (A,B) = ABA−1B−1, where the product on the right is taken over all roots iα + jβ
(i, j ∈ Z) arranged in some fixed order, and where the cij are integers depending on α, β and
the chosen ordering, but not on t and u.

Fact 2.47 ([25], Example (a) on page 24) If α+ β is not a root, then the right side of the
commutator formula in Fact 2.46 reduces to 1.

Fact 2.48 ([13], Lemma 10.1) Let Φ be a root system. If ∆ is a base of Φ, then (α, β) ≤ 0
for α ̸= β in ∆, and α− β is not a root.

Fact 2.49 ([14], Theorem 27.3) Let G be a reductive algebraic group, T a fixed maximal
torus and Φ = Φ(G,T ). Let ∆ be a base of Φ. Let Zα denote CG(Tα) where Tα = (kerα)◦

and α ∈ Φ. Then G is generated by the Zα (α ∈ ∆), or equivalently by T along with all Uα

(±α ∈ ∆).

Fact 2.50 ([14], Corollary 32.3) A semisimple algebraic group of Lie rank 1 is isomorphic
to SL2(K) or PGL2(K).

We conclude with some useful technical results on groups of finite Morley rank.

Proposition 2.51 Let Q be a group of finite Morley rank and i an involution acting on Q.
Suppose Q1 is a 2-divisible, i-invariant, definable, normal subgroup of Q. If in Q1 every element
has a unique square root or if i inverts Q1 then CQ/Q1

(i) = CQ(i)Q1/Q1.

Proof. We have to show that for every x ∈ Q, x−1xi ∈ Q1 implies that there exists y ∈ Q1

such that xy ∈ CQ(i).
First, assume that i inverts Q1. Let x ∈ Q such that x−1xi ∈ Q1. As Q1 is 2-divisible, there

is y ∈ Q1 such that x−1xi = y2. This implies that xy = xiy−1 = (xy)i. We are done.
Now assume that in Q1 every element has a unique square root. Consider Q−

1 = {z ∈ Q1 :
zi = z−1}. Let z ∈ Q−

1 . As Q1 is 2-divisible, z has a square root z1 ∈ Q1. z
i = (z21)

i = (zi1)
2

and z−1 = (z21)
−1 = (z−1

1 )2. By the uniqueness of the square roots, z−1
1 = (z1)

i. Hence, Q−
1 is

a 2-divisible set. Let x be as above. Then x−1xi ∈ Q−
1 . Hence, x−1xi = y2 for some y ∈ Q−

1 .
Now, by the same argument as in the previous paragraph, we are done. □

Proposition 2.52 Let G = d(S)Q be a group of finite Morley rank, where S is a Sylow 2-
subgroup of G and Q is a normal, definable, solvable 2⊥-subgroup. Assume that Q has a defin-
able, normal subgroup Q1 which is normalized by d(S) also. Assume also that S � d(S). Then
CQ(d(S))Q1/Q1 = CQ/Q1

(d(S)).

Proof. Let L/Q1 = CQ/Q1
(d(S)). It is sufficient to show that L ≤ CQ(d(S))Q1. Let x ∈ L.

The assumptions imply that Sx ≤ Q1d(S). By the conjugacy of Sylow 2-subgroups and the fact
that S�d(S) we can find y ∈ Q1 such that Sx = Sy. Thus xy−1 ∈ NQ(S) = CQ(S) = CQ(d(S))
(Fact 2.7). This implies L ≤ CQ(d(S))Q1. □
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Proposition 2.53 Let Q⋊ V be a group of finite Morley rank, with Q a definable, connected,
solvable 2⊥-group and V an elementary abelian 2-group of order at least 4 (i.e. the dimension
of V as a vector space over Z2 is at least 2). Then Q = ⟨CQ(Vα) : Vα ≤ V , and dim(Vα) =
dim(V )− 1⟩.

Proof. As Q is a 2⊥-group of finite Morley rank, every element has a unique square root by
Fact 2.25. This allows us to use Proposition 2.52. As Q is solvable, by induction on the rank
of Q, Proposition 2.52 and Fact 2.5, we may assume that Q is abelian.

We will prove the statement by induction on n = dim(V ). Assume first that n = 2. For
u ∈ V \{1}, the set Qu = {[a, u] : a ∈ Q} is the subgroup [Q, u]. As this subgroup is 2-divisible,
for every a ∈ Q, there exists b ∈ Qu such that [a, u] = b2. Equvialently aub−1 = ab. But b is
inverted by u, thus (ab)u = ab. Since a = abb−1, we conclude that Q = [Q, u]CQ(u).

Note that any element of V normalizes [Q, u]. Thus, if v is another nontrivial element of
V then an application of the argument in the above paragraph to [Q, u] implies that [Q, u] =
[[Q, u], v]C[Q,u](v). The remaining nontrivial element V is nothing but uv. Since both u and v
invert [[Q, u], v], uv centralizes this last subgroup. Therefore, Q = [[Q, u], v]C[Q,u](v)CQ(u) ≤
CQ(uv)Cq(v)CQ(u). This finishes the proof for n = 2.

Assume n > 2. V = ⟨v1, v2, v3, . . . , vn⟩. We have Q = [Q, v1]CQ(v1). We may assume that
CQ(v1) ̸= 1. Note that the group ⟨v2, . . . , vn⟩ normalizes CQ(v1). By induction we conclude
that CQ(v1) = ⟨CQ(W ) ∩ CQ(v1) : W ≤ ⟨v2, . . . , vn⟩, dim(W ) = n − 2⟩. Therefore, CQ(v1) =
⟨CQ(W ⊕ ⟨v1⟩) ∩ CQ(v1) :W ≤ ⟨v2, . . . , vn⟩, dim(W ) = n− 2⟩.

We then analyze the action of ⟨v1, . . . , vn⟩ on [Q, v1]. [Q, v1] = [[Q, v1], v2]C[Q,v1](v2). As
⟨v1, v3, . . . , vn⟩ normalizes C[Q,v1](v2), we obtain a generation statement for C[Q,v1](v2) as in the
last paragraph. Therefore we consider the action of ⟨v1, . . . , vn⟩ on [[Q, v1], v2].

Continuing in this manner we obtain

Q = [· · · [Q, v1] · · · , vn]C[···[Q,v1]···,vn−1](vn) . . . C[Q,v1](v2)CQ(v1)

Our arguments have shown that all the centralizers in the last statement are generated bu
the centralizers of codimension 1 vector subspaces of V . As [· · · [Q, v1] · · · , vn] is inverted by
v1, . . . , vn, it is centralized by v1v2, v1v3, . . . , v1vn. This finishes the proof. □

Corollary 2.54 Let QV be a group of finite Morley rank, where Q is a definable, connected,
solvable 2⊥-group and V is a definable subgroup whose Sylow 2-subgroups are 2-tori that contain
n ≥ 2 copies of Z2∞ (i.e. their Prufer rank is at least 2.) If T is a Sylow 2-subgroup of V then
Q = ⟨CQ(Tα) : Tα ≤ T , and the Prufer rank of Tα = n− 1⟩.

Proof. It is sufficient to show that if v ∈ I(T ), then CQ(Tv) = CQ(v), where Tv is the copy
of Z2∞ in T which contains v. Let w be a squareroot v in Tv and x ∈ CQ(v). We have
w2 = (w2)x = (wx)2. Since T is abelian, [w, x]2 = 1 and therefore [w, x] = 1 or [w, x] = v. If
the first possibility holds then there is nothing to do, thus we assume that [w, x] = v. Then a

small calculation shows that wx2

= w. Therefore x2 ∈ CQ(w). But Q is a 2⊥-group. Therefore
by Fact 2.22 x ∈ CQ(w). We get CQ(w) = CQ(v). Continuing this way we conclude that
CQ(Tv) = CQ(v). □

3 Weakly Embedded Subgroups

Definition 3.1 Let G be a group of finite Morley rank. A proper definable subgroup M of G is
said to be weakly embedded if it satisfies the following conditions:

i) Any Sylow 2-subgroup of M is infinite.

ii) For any g ∈ G \M , M ∩Mg has finite Sylow 2-subgroups.

We first prove a few basic properties of weakly embedded subgroups.
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Proposition 3.2 Let G be a group of finite Morley rank with a weakly embedded subgroup M .
Then the following hold:

i) For any Sylow 2-subgroup S of M , NG(S) ≤M .

ii) If S is a Sylow 2-subgroup of M then S is a Sylow 2-subgroup of G.

Proof. i) This is immediate.
ii) Let S be a Sylow 2-subgroup of M and let suppose T > S is a Sylow 2-subgroup of G.

By Facts 1.5 i) and 2.21 iii), NT (S) > S. But NT (S) ∩M = S as S is Sylow 2-subgroup of M .
This contradicts part i). □

Definition 3.3 A definable, connected, 2-subgroup of bounded exponent of a group of finite
Morley rank is called a unipotent 2-subgroup.

Note that a unipotent 2-subgroup is nilpotent by Fact 1.5 i).
Now we give a characterization of weakly embedded subgroups.

Proposition 3.4 Let G be a group of finite Morley rank. A proper definable subgroup M of G
is a weakly embedded subgroup if and only if the following hold:

i) M has infinite Sylow 2-subgroups.

ii) For any unipotent 2-subgroup U and 2-torus T in M , NG(U) ≤M , and NG(T ) ≤M .

Proof.
It is clear that if M is a weakly embedded subgroup then it satisfies the above conditions.

Therefore, we assume that M is a proper definable subgroup with the above properties and
show that it is a weakly embedded subgroup. Let g ∈ G and suppose S is an infinite Sylow
2-subgroup of M ∩Mg. We will show that g ∈M .

Let S1 be a Sylow 2-subgroup of M , such that S ≤ S1. By Fact 2.2 and Definition 2.6,
S◦ ≤ S◦

1 . By Fact 2.21 i), Z(S◦
1 ) ̸= 1. Z(S◦

1 ) ≤ CG(Z(S
◦)). By Fact 1.5, S◦ = B ∗ T where B

is a unipotent 2-subgroup and T is a 2-torus. If T ̸= 1 then it is central in S◦ and therefore,
Z(S◦

1 ) centralizes a nontrivial 2-torus ofMg. On the other hand, if T = 1 then S◦ is a unipotent
2-subgroup and by Fact 2.13, Z(S◦)◦ is a nontrivial unipotent 2-subgroup. Therefore, if T = 1,
then Z(S◦

1 ) centralizes a nontrivial unipotent 2-subgroup ofMg. This implies that Z(S◦
1 ) ≤Mg.

By Fact 1.5, S◦
1 = B1 ∗ T1, where B1 is a unipotent 2-subgroup and T1 is 2-torus. If

T1 ̸= 1 then being a subgroup of Z(S◦
1 ), it forces Z(S◦

1 ) to be infinite. If T1 = 1 then S◦
1 is

a unipotent 2-subgroup and has an infinite center by Fact 2.13. Therefore, Z(S◦
1 ) contains a

nontrivial characteristic subgroup which is either a unipotent 2-subgroup or a 2-torus. Hence,
S1 ≤ NG(Z(S

◦
1 )) ≤Mg. This means Sg

1 = Sx
1 , for some x ∈Mg. Hence, gx−1 ∈ NG(S1) ≤Mg,

and we get g ∈Mg, forcing g ∈M . □

4 Central Extensions

It is possible to develop a theory of central extensions for tame groups. In this section, we show
how to achieve this. Our proofs make use of the theory of central extensions of linear algebraic
group s as explained in [25] and also of the “no bad fields” hypothesis.

We prove the following theorem.

Theorem 4.1 Let G be a perfect tame group of finite Morley rank and let C be a definable
central subgroup of G such that G/C is a universal linear algebraic group over an algebraically
closed field; G is a central extension of finite Morley rank of a universal linear algebraic group.
Then C = 1.

11



In the proof of this theorem our notation and terminology will be the same as in [25] unless
otherwise stated. We differ from [25], and indeed from the theory of linear algebraic groups
in general, in the use of the word simple, which we apply only to groups which are simple as
abstract groups.

Theorem 4.1 will be used in proving the following theorem:

Theorem 4.2 Let G be a perfect tame group of finite Morley rank such that G/Z(G) is a
quasisimple algebraic group. Then G is an algebraic group. In particular, Z(G) is finite ([14]
Section 27.5).

Before we start our argument, we would like to mention two results by Pillay and Sokolovic
([23]) which are related to Theorem 4.2 and Proposition 4.10. In the fact below almost simple
means quasisimple.

Fact 4.3 ([23], Lemma 8) Let G be an almost simple algebraic group over an algebraically
closed field K. Then definable in the structure (G, .) there are, a subset F of G, an algebraically
closed field structure on F , and for some n a definable surjection from Fn onto G.

Fact 4.4 ([23], Theorem 10) Let M be an ω-stable structure. Let K be an algebraically
closed field definable inM , and H an almost simple algebraic group over K. Let G be a definably
almost simple group definable in M such that there is a definable (in M) homomorphism f from
G onto H. The there is an algebraic group H1 over K and a definable (in M) isomorphism of
G with H1.

Throughout this section, for any group G and x, y ∈ G, (x, y) will denote xyx−1y−1 as in
[25].

We start with an overview of some results from [25]. In [25], for a field k, and a root system
Σ, the following relations over the set of symbols {xα(t) : α ∈ Σ, t ∈ k} are defined:

(A) xα(t) is additive.

(B) If α and β are roots and α+ β ̸= 0, then (xα(t), xβ(t)) =
∏
xiα+jβ(cijt

iuj), where i and j
are positive integers and the cij are integers depending on α, β, and the chosen ordering
of the roots, but not on t or u.

(B′) wα(t)xα(u)wα(−t) = x−α(−t−2u) for t ∈ k∗, where

wα(t) = xα(t)x−α(−t−1)xα(t)

for t ∈ k∗.

(C) hα(t) is multiplicative in t, where hα(t) = wα(t)wα(−1) for t ∈ k∗.

Let Xu denote the group presented by (A) and (B) if rank Σ > 1 and by (A) and (B′) if
rank Σ = 1. If the the relation (C) is added, then we get the universal Chevalley group (see
[25]; the notation Xu is different from the one used in [25].)

We quote the following lemmas and theorems:

Lemma 4.5 ([25], Lemma 39, p.70) Let α be a root and Xu be as above. In Xu, set f(t, u) =
hα(t)hα(u)hα(tu)

−1. Then:
a) f(t, u2v) = f(t, u2)f(t, v).
b) If t, u generate a cyclic subgroup of k∗ then f(t, u) = f(u, t).
c) If f(t, u) = f(u, t), then f(t, u2) = 1.
d) If t, u ̸= 0 and t+ u = 1, then f(t, u) = 1.

Theorem 4.6 ([25], Theorem 9, p.72) Assume that Σ is indecomposable and that k is an
algebraic extension of a finite field. Then the relations (A) and (B) (or (B′) if rank Σ > 1)
suffice to define the corresponding universal Chevalley group, i.e. they imply the relations (C).
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The following theorems and corollaries about central extensions are proven in [25].

Theorem 4.7 ([25], Theorem 10, p. 78) Let Σ be an indecomposable root system and k a
field such that |k| > 4, and if rank Σ = 1, assume further that |k| ≠ 9. If X is the corresponding
universal Chevalley group (abstractly defined by the relations (A), (B), (B′), (C) above), if Xu

is the group defined by the relations (A), (B), (B′) (we use (B′) only if rank Σ = 1), and if π is
the natural homomorphism from Xu to X, then (π,Xu) is a universal covering extension of X.

Corollary 4.8 ([25]) Xu is centrally closed. Each of its central extensions splits, i.e. its Schur
multiplier is trivial. It yields the universal covering extension of all the Chevalley groups of the
given type.

Theorem 4.9 ([25], Theorem 12 (Matsumoro, Moore)) Assume that Σ is an indecom-
posable root system and k a field with |k| > 4. If X is the universal Chevalley group based on Σ
and k, if Xu is the group defined by (A), (B), (B′), and if π is the natural map from Xu to X
with C = kerπ, the Schur multiplier of X, then C is isomorphic to the abstract group generated
by the the symbols {t, u} (t, u ∈ k∗) subject to the relations:

a) {t, u}{tu, v} = {t, uv}{u, v}; {1, u} = {u, 1} = 1

b) {t, u}{t,−u−1} = {t,−1}

c) {t, u} = {u−1, t}

d) {t, u} = {t,−tu}

e) {t, u} = {t, (1− t)u}
and in the case Σ is not of the type Cn (n ≥ 1) the additional relation

ab′) { , } is bimultiplicative .

In this case relations a)-e) may be replaced by ab′) and

c′) { , } is skew.

d′) {t,−t} = 1.

The isomorphism is given by ϕ : {t, u} 7−→ hα(t)hα(u)hα(tu)
−1, α a fixed long root.

We have a perfect tame central extension G of finite Morley rank of a universal linear
algebraic group X over an algebraically closed field K. Let Xu be the universal covering
extension ofX. Let C◦ = kerψ, where ψ is the covering map from G ontoX. By the universality
of (π,Xu), there exists a map θ from Xu into G such that ψθ = π. Then θ(Xu)C◦ = G. But
G = (G,G) = (θ(Xu), θ(Xu)) = θ(Xu, Xu) = θ(Xu). Hence, θ is surjective. Then C = kerπ =
kerψθ = θ−1kerψ = θ−1(C◦).

If f is the function defined in Lemma 4.5, we will need to show that θ ◦f : K×K −→ Z(G)
is interpretable in G. The following fact is proved in [24]:

Fact 4.10 ([24], Corollaire 4.16) In a simple algebraic group over an algebraically closed
field, definability from the field and definability from the pure group coincide.

We prove a generalization of this fact. The proof makes use of the following results from
[24]:

Fact 4.11 ([24], Corollaire 4.2) There are no constructible (in the sense of algebraic geometry)
bad groups.

Fact 4.12 ([24], Théorème 4.15) An infinite field definable in a pure algebraically closed
field F is definably (in F ) isomorphic to F .
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Proposition 4.13 In a quasisimple algebraic group over an algebraically closed field , defin-
ability from the field and definability from the pure group coincide.

Proof. Let X = X(F ) be a quasisimple algebraic group over an algebraically closed field
F . We will use -notation to denote quotients by Z(X). By Fact 4.11, no bad groups are
definable in X. Therefore, we can interpret an algebraically closed field in X/Z(X) using its
Borel subgroups. Let us denote this field by K. As K is interpretable in F , these two fields are
definably isomorphic in F by Fact 4.12. Let us denote this isomorphism by θ. Let X(K) be
a linear algebraic group over K isomorphic to X(F ) by an isomorphism ψ induced by θ. The
isomorphisms ψα : Xα(F ) −→ Xα(K) defined by ψα(xα(t)) = xα(θ(t)) are definable in X since
they can be written as the composition of the isomorphism Xα(F ) −→ Xα(F ) induced by the
canonical homomorphism X −→ X with the definable isomorphism Xα(F ) −→ Xα(K) given
by

xα(t) 7−→ t 7−→ θ(t) 7−→ xα(θ(t))

where the maps xα(t) 7−→ t and θ(t) 7−→ xα(θ(t)) are F -algebraic, hence definable in X by Fact
4.10.

The isomorphisms ψα are induced by the isomorphism ψ : X(F ) −→ X(K) and conversely ψ
is definable from the ψα since every element of X is a product of a bounded number of elements
from the root groups Xα. Therefore, ψ is definable.

Now, let A be a subset of X(F )n definable from F . ψ(A) is definable in X(K)n from K and
hence is definable in X. But ψ and K are definable in X. Hence, A = ψ−1(ψ(A)) is definable
in X. □

Proposition 4.14 Let G be a tame group of finite Morley rank. Assume that G is a perfect
central extension of a universal linear algebraic group X, such that the kernel of the covering
map from G onto X is a definable central subgroup of G. If Xu is the universal covering of X
and θ : Xu −→ G is the unique induced map as in Theorem 4.7, and f : K ×K −→ (Xu) is
the function defined in Lemma 4.5, then the function θ ◦ f is interpretable in G.

Proof. In order to prove Theorem 4.7, Steinberg proves that the relations (A), (B) and (B′)
can be lifted from a universal linear algebraic group X to any of its central extensions. To
do so he starts with a central extension (ψ,G) of X and he constructs a map ϕ from the root
subgroups of X into G. We will make use of this map in order to show that the function θ ◦ f
is interpretable in G.

The first step in the proof is to show that ϕ is interpretable in G. To do so, we need to look
at the definition of ϕ. First, an element a of K∗ is chosen so that c = a2 − 1 ̸= 0. In G/C,
(hα(a), xα(t)) = xα(ct) for all α ∈ Σ, t ∈ K. Then ϕ(xα(t)) is defined so that:

i) ψ(ϕ(xα(t))) = xα(t)
ii) (ϕ(hα(a)), ϕ(xα(t))) = ϕ(xα(ct)).
Steinberg observes that this determines ϕ as a map from the root groupXα = ⟨xα(t) : t ∈ K⟩

into G. The xα are definable from the field over which X is defined. Therefore, by Proposition
4.13, they are definable from the pure group G. On the other hand, the following formula
defines ϕ:

ϕ(x) = y

if and only if

∃x1, y1(ψ(x1) = y1 & (g◦, y1) = y & ∃t(x1 = xα(t) & x = xα(ct))),

where g◦ is the group element defined by hα(a). As a result, we conclude that ϕ is an inter-
pretable map from Xα into G. One can do the same thing for all roots and get a map ϕ which
lifts (interpretably in G) the Xα from X to G.

14



Now we define the following functions from K into G:

wα(t) = ϕ(xα(t))ϕ(x−α(−t−1))ϕ(xα(t))

hα(t) = wα(t)wα(−1)

As ϕ and the xα are interpretable in G, so is wα and therefore, hα. Hence, using Proposition
4.13, the following function also is interpretable in G:

f : K∗ ×K∗ −→ G

(t, u) 7−→ hα(t)hα(u)hα(tu)
−1 .

But f = θ ◦ f since i) and ii) hold in Xu for xα(t) and are preserved by homomorphisms. This
finishes the proof. □

Now we can prove Theorem 4.1:
Proof of Theorem 4.1. Let t ∈ K∗ \ {1}. We consider the set Bt = {u ∈ K∗ : f(t, u) =
1}. As K is an algebraically closed field, by Lemma 4.5 a), f is multiplicative in the second
component. Therefore, Bt is a subgroup containing t by Lemma 4.5 b) and c). If t is of infinite
order, then Bt is infinite. Hence, using our assumption about the nonexistence of bad fields
in the environment, we conclude that Bt = K∗. On the other hand, if t is of finite order,
then fix u ∈ K∗ of infinite order. Then f(u, t−1) = 1 by the first part of the argument. But
f(u, t−1) = f(t, u) = 1 by Theorem 4.9 c). Hence, again Bt contains elements of infinite order,
and thus Bt = K∗. This finishes the argument. □

Finally, we can prove Theorem 4.2.
Proof of Theorem 4.2. We start with a perfect tame group G of finite Morley rank such
that G/Z(G) is a quasisimple algebraic group. Let X be the universal group of the same type
as G/Z(G). Then we have the following diagram:

G
π1HH
HHj

X π2���
�* G/Z(G)

We form the pullback of this diagram:

G
HH

HHj

π1

X
���

�*

π2

G/Z(G)Y

θ1

θ2

��
��*

H
HHHj

Then Y ∼= {(g, x) ∈ G × X : π1(g) = π2(x)}. In this diagram, π1 and G/Z(G) are inter-
pretable in G. On the other hand, as X is an algebraic group, it is interpretable in G/Z(G)
and hence in G. Moreover, the triple (X,G/Z(G), π2) is algebraic and hence interpretable in

G, say as (X∗, G
∗
, π∗), where G

∗ ∼= G/Z(G) definably; hence we may take G
∗
= G/Z(G) and

π∗ : X∗ −→ G/Z(G).
The pullback Ỹ of π1 and π∗ is interpretable in G. Hence it is of finite Morley rank. Since

Ỹ ∼= Y , Y also has finite Morley rank. Moreover, Y is a definable central extension of X.
Therefore, we can apply Theorem 4.1 to Y and X and conclude, using [25, (iii), p. 75] that
Y ∼= X ∗ A, where A is abelian. Note that θ1(Y

′) = (θ1(Y ))′ = G′ = G. But Y ′ ∼= X is an
algebraic group. Therefore, G is a quotient of an algebraic group by a finite group. We conclude
that G also is an algebraic group. □
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5 B-D

The proof of Theorem 1.7 is based on the analysis of the interaction between the unipotent
2-subgroups and the 2-tori of a counterexample to the theorem. In this section, we introduce
concepts which will be used in this analysis and obtain some basic results.

IfG is a group of finite Morley rank then U(G) will denote the set of its unipotent 2-subgroups
and T (G) the set of its 2-tori.

Definition 5.1 Let G be a group of finite Morley rank. Then B(G) = ⟨U : U ∈ U(G)⟩ and
D(G) = ⟨d(T ) : T ∈ T (G)⟩. A group G of finite Morley rank is said to be of D-type if G = D(G)
and of B-type if G = B(G).

Note that for any group of finite Morley rank G, B(G) andD(G) are definable and connected
by Fact 2.3.

In the sequel, we will need information about B(H) and D(H), where H is a proper de-
finable subgroup of a counterexample to Theorem 1.7. Such a subgroup is a K-group of finite
Morley rank. Therefore, we prove some lemmas about K-groups. We start with some general
statements:

Lemma 5.2 Let X ( Y ) be a B-type (resp. D-type) group. Suppose X1 (Y1) is a normal
definable subgroup of X (resp. Y ). Assume that X1 (Y1) contains a maximal unipotent 2-
subgroup (resp. a maximal 2-torus). Then X = X1 (Y = Y1).

Proof. As X1 is normal and definable in X, by Facts 1.5 ii) and 2.31, X1 contains all the
unipotent 2-subgroups of X. But X is a B-type group, hence X = X1. The same argument
works for a D-type group after one replaces unipotent 2-subgroups with the definable closures
of 2-tori. □

Proposition 5.3 Let R be a connected nonnilpotent group of finite Morley rank such that
F (R)◦ is divisible. Then [R,F (R)◦] is torsion-free.

Proof. Let F = F (R)◦. By Fact 2.12, F = R1 ∗R2, where R1 is torsion and R2 is torsion-free.
By Fact 2.12, R1 is central in F . Therefore, F ′ ≤ R2 and, in particular is torsion-free.

We mimic the proof of Theorem 3 in [22]. Let g ∈ R. We define the following mapping:

γg : F/d(R1) −→ [R,F ]/F ′

ad(R1) 7−→ [g, a]F ′

We first check that γg is well-defined. Assume a, b ∈ F such that b−1a ∈ d(R1). R1 and
therefore d(R1) is abelian. By Fact 2.10, ii) R1 is the direct sum p-tori for some prime numbers
p. As R1 is normal in R, by Fact 2.30, it is centralized by R. This forces d(R1) to be central
in R also. Therefore, we have 1 = [g, b−1a] = [g, a][g, b−1]a = [g, a]a−1g−1bgb−1a. This last
expression is equal to [g, a]a−1b−1ag−1bg because b−1a ∈ d(R1), b

g ∈ F and d(R1) is central
in F . As [g, a]a−1b−1ag−1bg = [g, a][a, b][b, g], [g, b] and [g, a] are in the same coset of F ′.
Therefore, γg is well-defined.

Next, we check that γg is group homomorphism. Let a, b ∈ F . Then [g, ab] = [g, b][g, a]b =
[g, b][g, a][[g, a]−1, b] ≡ [g, a][g, b] modulo F ′.

As F/d(R1) is torsion-free, its image under γg is also torsion-free (Fact 2.22).
Now, for any g1, · · · , gn ∈ R, let g = (g1, · · · , gn) and define the following mapping:

γg : (F/d(R1))
n −→ [R,F ]/F ′

(a1d(R1), · · · , and(R1)) 7−→
∏n

k=1[gk, ak]F
′

This mapping is a homomorphism because [R,F ]/F ′ is abelian. As F/d(R1) is torsion-free,
so is the image of γg (Fact 2.22). This implies that [R,F ]/F ′ is torsion-free as every element
of [R,F ]/F ′ is contained in the image of some γg. But F

′ is a torsion-free definable subgroup.
Therefore, we conclude that [R,F ] is also torsion-free. □
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Lemma 5.4 If R is a solvable D-type group of finite Morley rank then R = d(T )F (R), where
T is a maximal 2-torus of R.

Proof. By Fact 2.19, R/F (R) is a divisible abelian group.

R/F (R) = ⟨d(T )F (R)/F (R) : T ∈ T (R)⟩.

Therefore, R/F (R) also is a D-type group and since it is abelian, we haveR/F (R) = d(T1/F (R)),
where T1/F (R) is a maximal 2-torus of R/F (R). But by Fact 2.33 ii), T1/F (R) = TF (R)/F (R),
where T is maximal 2-torus of R. Therefore, R/F (R) = d(TF (R)/F (R)) = d(TF (R))/F (R) =
d(T )F (R)/F (R). □

Lemma 5.5 Let Y be a D-type K-group. Then U(Y ) = ∅.

Proof. We carry out a case-by-case analysis:
Y is nilpotent: In this case, Y = d(T ), where T is the maximal 2-torus of Y . By Fact 2.10,

d(T ) is a divisible abelian group. Fact 2.27 implies Y has finitely many involutions. Therefore,
using Fact 2.28, we conclude that U(Y ) = ∅.

Y is solvable nonnilpotent: We argue by induction on the rank of Y . Suppose Y is
a counterexample of minimal rank. Let S be a Sylow 2-subgroup of Y . By Fact 2.34, S is
connected. Hence, S = B ∗ T with B ̸= 1 and T ̸= 1. By Fact 2.35, B � Y . Hence, B is a
subgroup of every Sylow 2-subgroup of G and it is centralized by every 2-torus in G. Therefore,
B is central in Y .

We claim that F (Y )◦ = B. By Fact 2.11, F (Y )◦ = C ∗D, where C is definable, connected
and of bounded exponent, and D is definable and divisible. If D ̸= 1, then rk(Y/D) < rk(Y ).
This yields a contradiction because BD/D is nontrivial unipotent 2-subgroup of Y/D and Y/D
is a D-type group. Thus, F (Y )◦ = C.

Fact 2.20 implies F (Y )◦ is the direct sum of its Sylow p-subgroups, which are definable.
If P is such a Sylow p-subgroup, where p ̸= 2, then P = 1 because otherwise, P is infinite
(it is connected by 2.34) and rk(Y/P ) < rk(Y ), and arguing as above yields a contradiction.
Therefore, F (Y )◦ = B. In particular, F (Y )◦ is central in Y . This forces Y to be nilpotent, a
contradiction.

Y is nonsolvable: We will use notation to denote quotients by σ(Y ). By Fact 2.40,
Y = Y1 ⊕ · · · ⊕ Ym, where the Yi are simple algebraic groups over algebraically closed fields of
odd characteristic.

Let S be a Sylow 2-subgroup of Y . Then S◦ = B ∗ T , where B is definable, connected,
of bounded exponent and T is divisible abelian. Both B and T are nontrivial. We claim
σ(Y )◦ = F (Y )◦ = Z(Y )◦ = B. As Y is the direct sum of simple algebraic groups over
algebraically closed fields, B(Y ) = 1. Therefore, B ≤ σ(Y )◦. By Fact 2.35, B is characteristic
in σ(Y ), and thus B � Y . As B is the largest unipotent 2-subgroup of every Sylow 2-subgroup
of Y , it is centralized by the 2-tori of Y . But Y is a D-type group, therefore B is central in Y .
The same argument as in the case where Y is solvable implies that F (Y )◦ = B. But by Fact
2.19, σ(Y )◦/F (Y )◦ is an abelian group and B is central in Y . This forces σ(Y )◦ to be nilpotent
and in particular σ(Y )◦ = F (Y )◦.

We have B = Z(Y )◦ and Y/B = Y1/B ∗ · · · ∗ Ym/B, where the Yi/B are finite central
extensions of simple algebraic groups over algebraically closed fields of odd characteristic. We
will do component analysis in the style of [21]. If i ̸= j, then [Yi, Yj ] ≤ B. For every i, Y ′

i is
connected and Y ′

iB/B�Yi/B. Therefore, we have Yi = Y ′
iB and Y = Y ′

1 · · ·Y ′
mB. The subgroup

Y ′
1 · · ·Y ′

m contains a maximal 2-torus of Y . Therefore, by Lemma 5.2, Y = Y ′ = Y ′
1 · · ·Y ′

m. By
continuing to take commutators we may assume that Y = Y1 ∗ · · · ∗Ym, where the Yi are perfect
groups. We also have Z(Y ) = Z(Y1) · · ·Z(Ym). Therefore, each Yi/Z(Yi) is a perfect group
which is a central extension of a simple algebraic group by a finite center. By Theorem 4.2 each
Yi/Z(Yi) is a quasisimple algebraic group. By Theorem 4.2 , Yi is an algebraic group. Therefore,
Z(Yi) is finite. This last conclusion proves that Y cannot have unipotent 2-subgroups. □
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Lemma 5.6 Let G = K ⋊H be a group of finite Morley rank, where H and K are connected
definable subgroups of G, and K is a K-group of B-type. Assume that H centralizes all definable
simple and B-type solvable sections of K normalized by H. Then H centralizes K. (A similar
statement can be made for D-type groups.)

Proof. We prove the statement for B-type groups. The same proof works for D-type groups
“mutatis mutandis”. By Fact 2.40, K/σ(K) is isomorphic to the direct sum of simple algebraic
groups over algebraically closed fields of characteristic 2. Since H is connected, H normalizes
each of these simple algebraic groups. Thus by the hypotheses, H centralizes K/σ(K). There-
fore, H centralizes Uσ(K)/σ(K) where U is a unipotent 2-subgroup of K. This implies that H
normalizes Uσ(K). Uσ(K) is a definable solvable subgroup of K. Therefore, H acts trivially
on B(Uσ(X)), and in particular, U . As K is B-type group, H centralizes K. □

Lemma 5.7 If B is a unipotent 2-subgroup acting on a D-type K-group Y , then the action is
trivial.

Proof. We carry out a case-by-case analysis:
Y is nilpotent: Y is nilpotent implies that Y = d(T ), where T is the 2-torus of Y . By

Fact 2.30, B centralizes T . Therefore, it also centralizes d(T ).
Y is solvable and nonnilpotent: By Lemma 5.4, Y = d(T )F (Y )◦, where T is maximal 2-

torus of Y . The group B acts on F (Y )◦. We claim that the group BF (Y )◦ is nilpotent. Suppose
this is not the case. As BF (Y )◦ is solvable and connected, by Fact 2.18, an algebraically closed
field K can be interpreted in BF (Y )◦, and a definable section of B is isomorphic to an infinite
definable subgroup of K∗. But then by Fact 2.28, K∗ has infinitely many involutions. This
contradicts Fact 2.27. Therefore, BF (Y )◦ is nilpotent. Then by Fact 2.11, B centralizes F (Y )◦.

By replacing T by one of its conjugates in Y , we may assume that B and T are in the same
Sylow 2-subgroup of BY . But this implies that B centralizes T and therefore d(T ). By the
above paragraph, B centralizes F (Y )◦. Thus, we conclude that B centralizes Y = d(T )F (Y )◦.

Y is nonsolvable: This follows from Fact 2.39, the result for Y solvable and Lemma 5.6.
□

Corollary 5.8 If H is a K-group then B(H) and D(H) commute.

Lemma 5.9 If X is a B-type K-group then T (X) = ∅.

Proof. We carry out a case-by-case analysis.
X is solvable: By Fact 2.35, X is a unipotent 2-group and we are done in this case.
X is nonsolvable: We assume that X is a counterexample of minimal rank to the

statement. Therefore, D(X) ̸= 1. X/σ(X) is the direct sum of simple algebraic groups over
algebraically closed fields of characteristic 2.

We claim that σ(X)◦ = F (X)◦ = Z(X)◦. By Lemma 5.7, D(X) is central in X and
D(X) = d(T ), where T is the maximal 2-torus of X. By Fact 2.11, F (X)◦ = C ∗D, where C
is definable, connected, of bounded exponent and D is definable and divisible. By induction on
rank, we may assume C = 1. If F (X)◦ < σ(X)◦ then by Fact 2.18, an algebraically closed field
K is interpretable in σ(X)◦. Since σ(X)◦

′ ⊆ F (X)◦, K+ is isomorphic to a definable section of
F (X)◦, and a definable section of σ(X)◦/F (X)◦ is isomorphic to an infinite subgroup of K∗.
The “no bad fields” assumption implies that this definable section is isomorphic to K∗.

The characteristic of K is 0 because F (X)◦ is divisible. Therefore, K∗ contains a nontrivial
2-torus. Fact 2.33 implies that σ(X)◦/F (X)◦ contains a nontrivial 2-torus. This implies that
σ(X)◦ contains a noncentral 2-torus, a contradiction. Therefore, F (X)◦ = σ(X)◦.

Let U be a unipotent 2-subgroup. We claim that the group F (X)◦U is nilpotent. If this
is not the case then, as F (X)◦U is connected and solvable, by Fact 2.18, an algebraically
closed field K can be interpreted in F (X)◦U and a definable section of U is isomorphic to an
infinite subgroup of K∗. But then Fact 2.28 implies that K∗ has infinitely many involutions
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although this is impossible by Fact 2.27. Therefore, F (X)◦U is nilpotent and Fact 2.11 implies
that F (X)◦ centralizes U . Since X is B-type group, we conclude that F (X)◦ is central in X;
σ(X)◦ = F (X)◦ = Z(X)◦.

Now we can finish the argument as in the proof of Lemma 5.5. □

Lemma 5.10 If X is a B-type K-group and C is a nilpotent, connected, 2′-group of bounded
exponent of finite Morley rank acting definably on X, then the action is trivial.

Proof. We carry out a case-by case analysis:
X is solvable: By Facts 2.35 and 1.5 i), X is nilpotent. The rest of the argument is an

application of Fact 2.18.
X is nonsolvable: This follows from Fact 2.39, the result for X solvable and Lemma 5.6.

over algebraically closed fields □

Lemma 5.11 If X is a B-type K-group and T is a torsion-free nilpotent group of finite Morley
rank acting on X definably then this action is trivial.

Proof. We carry out a case-by-case analysis:
X is solvable: By Fact 2.35, X is nilpotent. We claim that the group XT is nilpotent.

If this is not the case then as XT is a connected solvable group of finite Morley rank, by Fact
2.18, an algebraically closed field K of characteristic 2 is interpretable in XT . The “no bad
fields” hypothesis implies that a definable section of T is isomorphic K∗. But T is torsion-free,
a contradiction. Therefore, XT is nilpotent. Therefore X is centralized by T .

X is nonsolvable: This follows from Fact 2.39, the result for X solvable and Lemma 5.6.
□

Lemma 5.12 Let T be a group such that T ∼= F ∗, where F is an algebraically closed field of
characteristic 2. If T acts on a D-type K-group Y , then the action is trivial.

Proof. The argument is again a case-by-case analysis:
Y is nilpotent: Y is the definable closure of its sole 2-torus.
Y is solvable and nonnilpotent: Suppose the action of T is nontrivial. By Fact 2.18, we

can interpret an algebraically closed field of characteristic 2 in the group H = Y T . This forces
Y to have a definable section which is a unipotent 2-group. But then B(Y ) ̸= 1, a contradiction.

Y is nonsolvable: This follows from Fact 2.39, the result for Y solvable and Lemma 5.6.
□

Lemma 5.13 If an involution i acts on a D-type K-group Y , and CY (i) does not contain
nontrivial 2-tori, then Y is solvable. If, in addition, Y is nilpotent, then i inverts Y .

Proof. We first prove the second statement. Therefore, we assume that Y is nilpotent. As
Y = D(Y ), Y = d(T ), where T is the maximal 2-torus in Y . In particular, Y is abelian. By
Fact 2.37, it is enough to show that under the assumptions of the statement of the fact, CY (i)
is finite.

We let K = {g−1gi : g ∈ Y }. Note that the elements of K are inverted by i. As Y is abelian,
K is a definable subgroup and the following map is a homomorphism from Y onto K:

θ : Y −→ K
g 7−→ g−1gi

As the fibers of this map correspond to the cosets of CY (i) in Y , we have rk(Y ) = rk(K) +
rk(CY (i)). The assumptions on Y imply that rk(CY (i)) < rk(Y ). Therefore, K is an infinite
divisible subgroup of Y .

Let g ∈ G. Then g−1gt = k2 for some k ∈ K. This implies gtk−1 = gk. But k−1 = kt.
Therefore, (gk)t = gk. As g = gkk−1, we conclude that Y = CY (i)K.
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As Y is connected, we have Y = CY (i)
◦K. The assumption on CY (i) implies that CY (i)

◦

is 2⊥. But then K contains the Sylow 2-subgroup of Y . This forces CY (i)
◦ = 1.

Now we will show that Y is solvable. Assume towards a contradiction that Y is nonsolvable.
We will first show that σ(Y )◦ = 1. Suppose this is not the case. We first analyze F (Y )◦.
If F (Y )◦ is 2⊥ then, by Proposition 2.51, CY/F (Y )◦(i) = CY (i)F (Y )◦/F (Y )◦. Therefore,
CY/F (Y )◦(i) does not contain nontrivial 2-tori. By induction on rank, Y/F (Y )◦ is solvable, forc-
ing Y to be solvable, a contradiction. Therefore, F (Y )◦ has a nontrivial 2-torus. Let T1 be the
maximal 2-torus of F (Y )◦. T1 is i-invariant. By the assumption on CY (i), and using Fact 2.37, i
inverts T1. It follows that i inverts d(T1). By Proposition 2.51, CY/d(T1)(i) = CY (i)d(T1)/d(T1).
By induction on rank, we conclude that Y/d(T1) is solvable, which forces Y to be solvable, a
contradiction. As a result, we have F (Y )◦ = 1, and therefore, σ(Y )◦ = 1.

The conclusion of the above paragraph and Fact 2.40 imply that Y = Y1 · · ·Yn where
the Yi are central extensions of simple algebraic groups over algebraically closed fields of odd
characteristic. Moreover, these can be taken to be perfect subgroups. Then the results on
central extensions imply that the Yi are quasisimple algebraic groups over algebraically closed
fields of odd characteristic.

Note that, since i is an involution, n in the above paragraph can be taken to be at most
2. Hence, we have Y = Y1 ∗ Y2. Now, we will argue that n = 1. i is contained in a Sylow
2-subgroup S of Y ⋊ ⟨i⟩. T = S◦ is a 2-torus. The hypotheses on CY (i) imply that i inverts
T . But this means that T ≤ Y1 ∩ Y i

1 , in particular, this intersection is infinite. This forces
Y1 = Y i

1 = Y2. Hence, we have reduced our nonsolvable configuration to the case where Y is
a quasisimple algebraic group over an algebraically closed field of odd characteristic. Now, the
conclusion follows from Facts 2.38 and 2.45. □

Definition 5.14 Let G be a group of finite Morley rank. Define a graph on U(G) as follows.
The vertices of the graph are the elements of U(G). Two vertices U1 and U2 are connected by
an edge if U1 and U2 normalize each other; this will be denoted by U1 ∼ U2.

We will investigate some basic properties of this graph. Note that two vertices U and V are
in the same connected component of U(G) if and only if there exists a sequence A◦, . . . , An of
unipotent 2-subgroups such that U = A◦, V = An and for 0 ≤ i ≤ n−1, Ai and Ai+1 normalize
each other.

Proposition 5.15 Let G be a tame K∗-group, and U1, U2 ∈ U(G). If U1 ∼ U2, then
D(CG(U1)) = D(CG(U2)).

Proof. As U1 normalizes U2, U1 normalizes D(CG(U2)). Since, by Lemma 5.5, U2 is not in
D(CG(U2)), D(CG(U2)) is a K-group. Then by Lemma 5.7 U1 centralizes D(CG(U2)). Hence,
D(CG(U2)) ≤ CG(U1) and we get D(CG(U2)) ≤ D(CG(U1)). By symmetry, we obtain equality.
□

Corollary 5.16 Let G be a tame K∗-group, and U1, U2 ∈ U(G). If U1 and U2 are in the same
connected component of U(G), then D(CG(U1)) = D(CG(U2)).

Corollary 5.17 Let G be a tame K∗-group, and U1, U2 ∈ U(G). If U(G) is a connected graph
then D(CG(U))�G, for any unipotent 2-subgroup U of G.

Proposition 5.18 Let G be a group of finite Morley rank. Let W denote a connected component
of U(G), and M = NG(⟨W⟩). Then U(M) = W.

Proof. We need to show that U(M) ⊆ W. Let U, V ∈ U(M) such that U ∈ W. We will
show that V ∈ W. First, we argue that U and V can be replaced by maximal unipotent 2-
subgroups. U ≤ S1 and V ≤ S2, where S1 and S2 are two Sylow 2-subgroups of M . By Fact
1.5, S◦

1 = B1 ∗ T1 and S◦
2 = B2 ∗ T2, and U ≤ B1 and V ≤ B2. Note that B1 ∼ Z(B1)

◦ ∼ U
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(Z(B1)
◦ ̸= 1 by Facts 1.5 i), and 2.21 i)) and B2 ∼ Z(B2)

◦ ∼ V . Hence, we can replace U and
V by B1 and B2 which are maximal unipotent 2-subgroups.

By the Sylow theorem, there exists g ∈M such that Bg
1 = B2. Hence, B2 ≤ ⟨W⟩ and g can

be taken to be in ⟨W⟩. Proceeding inductively, it suffices to treat the case in which g ∈W ∈ W.
In this case, W g =W , so Wg = W and B2 = Bg

1 ∈ W.
□

Corollary 5.19 Let G be a group of finite Morley rank. Let W be a connected component of
U(G). NG(⟨W⟩) = Stab(W). In particular, Stab(W) is a definable subgroup.

In the sequel we will have certain groups which are isomorphic to either PSL2(K) or SL2(K)
over an algebraically closed field K. We will denote this situation by (P )SL2(K).

Lemma 5.20 If H is a nonsolvable, tame, connected K-group with a weakly embedded subgroup,
then H/O(H) ∼= (P )SL2(K), where K is an algebraically closed field.

Proof. LetM be a weakly embedded subgroup of H. Note that F (H)◦ = O(H). We will show
that either MO(H)/O(H) is a weakly embedded subgroup of H = H/O(H) or H = MO(H).
We will use Proposition 3.4. We use -notation to denote quotients by O(H). Clearly, M has
infinite Sylow 2-subgroups. Let U be a subgroup of H, which contains O(H), such that U is

a unipotent 2-subgroup of M . Suppose U
x
= U for some x ∈ H. This implies that Ux = U ,

and therefore x ∈ NH(B(U)). Clearly, U ≤ MO(H) and we have U = O(H)(M ∩ U). As U is
solvable and its Sylow 2-subgroups are of bounded exponent, by Fact 2.35, U has a unique Sylow
2-subgroup, which is a subgroup ofM ∩U by Fact 2.33. Hence, B(U) ≤M . But x ∈ NH(B(U))
and M is a weakly embedded subgroup. This implies x ∈ M forcing x ∈ M . Now let T be a

subgroup of H such that T is a 2-torus ofM and x ∈ H such that T
x
= T . Hence, T x = T , and

therefore x ∈ NH(D(d(T ))). If MO(H) < H then MO(H) is a weakly embedded subgroup of
H. Therefore, replacing M by MO(H), we may assume that M contains O(H) and therefore
T . But then x ∈ NH(D(d(T ))) forces x ∈ M , and x ∈ M . If M < H then M is a weakly
embedded subgroup of H, otherwise H =MO(H).

We first analyze the possibility M < H. In this case, σ(H)◦ = O(H) and therefore, by Fact
2.40, H = H/O(H) is the central product of quasisimple groups of finite Morley rank. As H
has a weakly embedded subgroup, we conclude that H is a quasisimple group. By the results
on central extensions, H is a quasisimple algebraic group with a weakly embedded subgroup.

We claim that H ∼= (P )SL2(K), where K is an algebraically closed field. Let X = H. We
will show that X has Lie rank 1. Then the result will follow from Fact 2.50. Let M denote a
weakly embedded subgroup of X. By Proposition 3.2, M has a Sylow 2-subgroup S which is
also a Sylow 2-subgroup of X.

We first assume that char(K) = 2. In this case S is a maximal unipotent subgroup of
X. We may assume that S = ⟨Xα : α ∈ Φ+⟩. Let S− = ⟨Xα : α ∈ Φ−⟩. By Proposition
3.4, NX(U) ≤ M for any unipotent 2-subgroup in M . In particular, NX(Uα) ≤ M for every
α ∈ Φ+, where Uα is the root subgroup corresponding to α (by Proposition 4.13 Uα is definable
in X). Suppose X has Lie rank greater than 1. Then Φ+ has a base with at least 2 distinct
roots α and β. By Fact 2.48, α− β is not a root. Fact 2.46 implies that the root subgroups Uα

and U−β commute. Therefore, U−β centralizes a unipotent 2-subgroup of M and U−β ≤ M .
This forces Z(S−) ≤ M . But then, as Z(S−) is a nontrivial unipotent 2-subgroup, S− ≤ M .
Hence, by Fact 2.49, M = G, a contradiction. Therefore, if char(K) = 2 then the Lie rank of
X is 1.

Now we assume char(K) ̸= 2. Then the Sylow 2-subgroups of X are contained in maximal
tori. Let Tα and Zα be as in Fact 2.49. Suppose the rank is greater than 1. Then Tα ̸= 1
for any α ∈ ∆. Moreover, Zα ≤ M by Proposition 3.4. This forces M = X, a contradiction.
Therefore, in this case also the rank of X is 1.

Now we analyze the possibility H = MO(H). Note that under this assumption B(H) = 1
because otherwise H has a nontrivial unipotent 2-subgroup U which normalizes O(H). But then
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Fact 2.36 implies that U centralizes O(H) forcing O(H) ≤M and thusH =M . This contradicts
that M is a proper subgroup of H. Another implication of the assumption H =MO(H) is that
the Sylow 2-subgroups of H have Prufer rank 1. If the Prufer rank of the Sylow 2-subgroups
of H is bigger than 1 then Corollary 2.54 implies that O(H) is generated by the centralizers
large 2-tori in M . This forces O(H) ≤ M and H = M , which contradicts that M is weakly
embedded subgroup of H.

We claim that σ(H)◦ = O(H). We first show F (H)◦ = O(H). If F (H)◦ ̸= O(H) then as
H is tame F (H)◦ > O(H). As a result F (H)◦ has an infinite Sylow 2-subgroup (Fact 2.34),
which is unique in F (H)◦ (Fact 2.20). Therefore it is normal in H. This contradicts that
H has a weakly embedded subgroup. If σ(H)◦ > O(H), then σ(H)◦/O(H) has a connected
Sylow 2-subgroup (Fact 2.34). This nontrivial 2-torus is contained in the connected component
of every Sylow 2-subgroup of H/O(H). But the Prufer rank is 1. Therefore, the Sylow 2-
subgroup of σ(H)◦/O(H) is the connected component of every Sylow 2-subgroup of H/O(H),
a contradiction.

Fact 2.40, the fact that the Prufer rank is 1 and σ(H)◦ = O(H) imply that H/O(H) is
isomorphic to a quasisimple algebraic group. This group is over an algebraically closed field
of characteristic different from 2 as B(H) = 1. We will show that this group is isomorphic to
(P )SL2(K). By replacing H with NH(M ∩ O(H)) we may assume that M ∩ O(H) �H. We
will use ˜ -notation to denote quotients by M ∩O(H)).

We consider the following action of H̃/Õ(H) on Z(Õ(H)) = Z1/M ∩O(H)). If x ∈ Z1 and

h ∈ H, then x̃h̃ is defined to be x̃h. This action is well-defined because if x1, h1 ∈ M ∩ O(H)
then (xx1)

h1h = xh1hxh1h
1 = xh[x, h1]

hxh1h
1 .

Let Ã be a H̃/Õ(H)-minimal subgroup of Z(Õ(H)). We claim that the action of H̃/Õ(H)
on Ã is not trivial. Suppose towards a contradiction that the action is trivial. Then for any

x ∈ A and h ∈ H, x̃h = x̃. This implies [x, h] ∈ M ∩ O(H). If S is a Sylow 2-subgroup of
M then [S, x] ⊆ M ∩ O(H). Hence, for s ∈ S, sx ∈ s(M ∩ O(H)) and therefore x normalizes
S(M ∩ O(H)) which is forced to be a subgroup of M ∩ Mx. As M is a weakly embedded
subgroup of H, x ∈M , thus xM ∩O(H). But then Ã = 1, a contradiction.

Let X = H̃/Õ(H). As X is a quasisimple algebraic group and CX(Ã)�X, we may assume

that CX(Ã) = 1. Let B be a Borel subgroup of X. B is definable and connected. Let Ã1 be

a B-minimal subgroup of Ã. Then, by Fact 2.17, Ã1 ⋊ B/CB(A1) ∼= L+ ⋊ L1, where L is an
algebraically closed field of characteristic different from 2 and L1 ≤ L∗. By the “no bad fields”

hypothesis, L1 = L∗. As L is interpretable in K where K is the base field of H̃/Õ(H), L ∼= K
by Fact 4.12. Applying the same argument to Ã/Ã1 we eventually get a finite-dimensional
vector space structure on Ã on which X acts.

We will show that the Lie rank of X is 1. B has a common eigenvector v by Fact 2.43. Bv
is a 1-dimensional vector subspace of Ã. One can choose a basis for Ã, which contains v, in
such a way that B has a representation with upper triangular matrices. If the Lie rank of X is
bigger than 1 then Bv is fixed pointwise by at least one 1-dimensional torus. We may assume
Bv = Ã1. This implies that there is an infinite 2-subgroup T such that [T,A1] ≤M ∩O(H). In
particular, for any x ∈ A1 and t ∈ T , tx ∈ t(M ∩O(H)). Therefore, x normalizes T (M ∩O(H))
which forces T (M ∩O(H)) to be a subgroup of M ∩Mx and x ∈M ∩O(H), a contradiction to
Ã1 ̸= 1. Hence, the Lie rank of X is 1 and by Fact 2.50, X ∼= (P )SL2(K) over an algebraically
closed field of characteristic different from 2. This finishes the proof. □

Proposition 5.21 If X is a B-type K-group and U(X) is not connected, then X ∼= PSL2(K)
where K is an algebraically closed field of characteristic 2.

Proof. As U(X) is not connected, Fact 2.35 implies that X is not solvable. Similarly,
B(σ(X)) = 1. Therefore, using Lemma 5.9, we conclude that σ(X)◦ is a 2⊥-subgroup. By Fact
2.18, the action of any unipotent 2-subgroup on σ(X)◦ is trivial. Therefore, σ(X)◦ = Z(X)◦.

We claim that U(X/Z(X)◦) is not a connected graph. We will use -notation to denote
quotients by Z(X)◦. Let U, V ∈ U(X) be such that U and V normalize each other and
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Z(X)◦ ≤ U, V . Let x ∈ U . Then V x = V . V is a definable nilpotent subgroup of X. Therefore,
by Fact 2.20, it has a unique Sylow 2-subgroup normalized by x. This argument applies to
U also. Therefore, U and V have a single unipotent 2-subgroup each, and these subgroups
normalize each other. This implies that U(X) is not connected.

The above paragraph forces X/σ(X) to be a simple algebraic group over an algebraically
closed field of characteristic 2. This implies X = X ′Z(X)◦. But X is a B-type group, therefore,
X = X ′. Using Theorem 4.2, we conclude that X is a quasisimple algebraic group over an
algebraically closed field of characteristic 2.

If we can prove that X has a weakly embedded subgroup then we are done by Lemma 5.20.
We claim that the stabilizer of a connected component of U(X) is a weakly embedded subgroup.
Let W be such a connected component and M = Stab(W). M is definable by Corollary 5.19.
As U(X) is not connected, by Proposition 5.18, M < X. M has infinite Sylow 2-subgroups.
Let g ∈ X \M . Then M ∩Mg does not contain a nontrivial unipotent 2-subgroup because
otherwise W = Wg by Proposition 5.18 and g ∈ M , a contradiction to the choice of g. Using
Lemma 5.9, we conclude that M ∩Mg has finite Sylow 2-subgroups. Therefore M is a weakly
embedded subgroup. □

Definition 5.22 Let G be a group of finite Morley rank. Define a graph on T (G) as follows.
The vertices of the graph are the elements of T (G). Two vertices T1 and T2 are connected by
an edge if and only if they normalize (equivalently by Fact 2.30, centralize) each other; this will
be denoted by T1 ≈ T2.

Note that two vertices T1 and T2 of T (G) are in the same connected component of T (G)
if and only if there exists R◦, . . . , Rn ∈ T (G) such that T1 = R◦ and T2 = Rn, and for
1 ≤ i ≤ n− 1, [Ri, Ri+1] = 1.

Proposition 5.23 Let G be a tame, K∗-group of finite Morley rank. Let T1, T2 ∈ T (G) such
that T1 ≈ T2. Then B(CG(T1)) = B(CG(T2)).

Proof. Let T1 and T2 be as in the statement of the proposition. Then T1 normalizes B(CG(T2)).
By Lemma 5.8, T1 centralizes B(CG(T2)). This forces B(CG(T2)) ≤ B(CG(T1)). We get equality
by symmetry. □

Corollary 5.24 Let G be a tame, K∗-group of finite Morley rank. If T1 and T2 are in the same
connected component of T (G), then B(CG(T1)) = B(CG(T2)).

Corollary 5.25 Let G be a tame, K∗-group of finite Morley rank. If T (G) is connected then
B(CG(T ))�G for every T ∈ T (G).

The next lemma is an analog of Proposition 5.18.

Lemma 5.26 Let G be a group of finite Morley rank. Let W denote a connected component of
T (G) and M = NG(⟨W⟩). Then T (M) = W.

Proof. Let T1 and T2 be two 2-tori in M such that T1 ∈ W. We will show that T2 ∈ W. We
may assume that T1 and T2 are maximal since any 2-torus is in the same connected component
of T (M) as a maximal 2-torus which contains it. By the Sylow theorem, there exists g ∈M such
that T g

1 = T2. Therefore, T2 ≤ ⟨W⟩ and g can be taken to be in ⟨W⟩. Proceeding inductively
it suffices to treat the case in which g ∈ T3 ∈ W. In this case T1, T3 ∈ W and therefore their
conjugates T2 = T g

1 and T g
3 = T3 are in W. □

Corollary 5.27 Let G be a group of finite Morley rank. Let W be a connected component of
T (G). Then NG(⟨W⟩) = Stab(W). In particular, Stab(W) is definable.
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Corollary 5.28 If Y is a nonsolvable D-type K-group and T (Y ) is not connected then
Y/O(Y ) ∼= SL2(K) or PSL2(K), where K is an algebraically closed field of characteristic
different from 2.

Proof. Let W be a connected component of T (Y ) and M = NG(⟨W⟩). By Corollary 5.27,
M = Stab(W). We claim that M is a weakly embedded subgroup. M has infinite Sylow
2-subgroups. If g ∈ X \M , then M ∩Mg does not have infinite Sylow 2-subgroups because
otherwise W = Wg and g ∈M . Now the result follows from Lemma 5.20. □

Before we finish this section, we would like to mention an interesting property of B-type and
D-type subgroups of a tame K∗-group of finite Morley rank. Let G be a group of finite Morley
rank. Let B and D denote the posets of B-type and D-type subgroups of G respectively, ordered
by inclusion. One can define the following mappings:

BC : D −→ B
Y 7−→ B(CG(Y ))

DC : B −→ D
X 7−→ D(CG(X))

These mappings define a Galois connection (see [2]) between B and D because they satisfy
the following properties:

Proposition 5.29 i) The mappings BC and DC are order-reversing.

ii) If X ∈ B then X ≤ BCDCX and if Y ∈ D then Y ≤ DCBCY .

The following properties of BC and DC (or any Galois connection) can be checked easily:

Proposition 5.30 Let X ∈ B and Y ∈ D. Then DCX = DCBCDCX and BCY =
BCDCBCY .

Corollary 5.31 BCDC and DCBC are closure operations on B and D respectively, i.e.

i) For any X ∈ B and Y ∈ D, X ≤ BCDCX and Y ≤ DCBCY .

ii) For any X ∈ B and Y ∈ D, BCDCX = BCDCBCDCX and DCBCY = DCBCDCBCY .

iii) Both BCDC and DCBC are order-preserving.

The closed elements of B and D are of the form BCY and DCX respectively.

In the sequel we will use these properties several times and refer to them under the rubric
of Galois connection.

6 Construction of a Weakly Embedded Subgroup

In this section, we assume that G is a simple, tame, K∗-group of mixed type. We will show
that G has a weakly embedded subgroup. Let S be a Sylow 2-subgroup of G. Then S◦ = B ∗D
where B is a maximal unipotent 2-subgroup and D is a 2-torus, with B ̸= 1 and D ̸= 1.

As we have assumed that G is simple, U(G) is not a connected graph by Corollary 5.17. Let
W be the connected component of U(G) containing B and M1 = Stab(W). By Corollary 5.19,
M1 is definable. Also note that W = U(M1) by Proposition 5.18.

Proposition 6.1 NG(B) ≤M1.

Proof. Let g ∈ NG(B). Then B = Bg ∈ W ∩Wg, so W = Wg and g ∈M1. □
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Corollary 6.2 S ≤M1.

Now we prove that M1 is a reasonable candidate for a weakly embedded subgroup of G.

Proposition 6.3 For g ∈ G \M1, M1 ∩Mg
1 does not contain nontrivial unipotent 2-subgroups.

In particular, for any U ∈ U(M1), NG(U) ≤M1.

Proof. Suppose U is a unipotent 2-subgroup of M1 ∩Mg
1 . Then U ∈ W ∩Wg as W = U(M1)

by Proposition 5.18. But then W = Wg, contradiction. □

Propositions 3.4 and 6.3 show that if the normalizer of every 2-torus of M1 were in M1 then
M1 would be a weakly embedded subgroup of G. Therefore, for the remainder of this section,
we analyze the case in which this does not happen. We assume that M1 has a 2-torus R such
that NG(R) ̸≤M1. Note that by Fact 2.30, B(NG(R)) = B(CG(R)).

Proposition 6.4 U(NG(R)) is not connected.

Proof. Suppose U(NG(R)) is connected. Corollary 6.2 implies that R ≤ S1 ≤ M1, where S1

is a Sylow 2-subgroup of G. Therefore, U(NG(R))∩W ≠ ∅. This forces U(NG(R)) ⊆ W. Thus
W∩Wg ̸= ∅ for every g ∈ NG(R). As a result NG(R) ≤M1, which contradicts our assumption.
□

By Proposition 5.21, B(CG(R)) ∼= PSL2(K), where K is an algebraically closed field of
characteristic 2.

R centralizes a unipotent 2-subgroup (say A) of M1. This implies R ≤ D(CG(A)). But
then, as U(M1) = W, R ≤ D(CG(A)) = D(CG(B)). This implies that B ≤ B(CG(R)).
As B is a maximal unipotent 2-subgroup of G, we conclude that B is a Sylow 2-subgroup of
B(CG(R)). AsB(CG(R)) ∼= PSL2(K), B is an elementary abelian 2-group andNB(CG(R))(B) =
BT where T is a maximal torus of B(CG(R)). Let w be an involution in B(CG(R)) which
inverts T . T normalizes B and Bw, and therefore normalizes CG(B), CG(B

w), D(CG(B)),
and D(CG(B

w)). Lemma 5.12 implies that T centralizes D(CG(B)) and D(CG(B
w)). Hence,

⟨D(CG(B)), D(CG(B
w))⟩ ≤ D(CG(T )).

We let L = D(CG(T )) and Q = B(CG(R)). Then B ≤ Q and the discussion in the above
paragraph can be summarized as follows:

D(CG(Q)) ≤ D(CG(B)) ≤ D(CG(T )) = L.

Before we state the next lemma, we remark that the group QD(CG(Q)) = Q×D(CG(Q)).
Indeed, Q and D(CG(Q)) centralize each other, and Q ∩ CG(Q) = Z(Q) = 1 as Q = PSL2(K)
where K is an algebraically closed field of characteristic 2.

Lemma 6.5 If D(CG(Q)) = D(CG(B)) then NG(Q × D(CG(Q))) = NG(Q) is a weakly em-
bedded subgroup.

Proof. Let X = NG(Q×D(CG(Q))).
We claim that B(Q×D(CG(Q))) = Q. Let U ∈ U(Q×D(CG(Q))). Then as D(CG(Q))�

Q×D(CG(Q)), U acts on D(CG(Q)). But Lemma 5.7 implies that this action is trivial. Hence,
U centralizes D(CG(Q)) and in particular, it centralizes R, forcing U ≤ B(CG(R)) = Q. This
also implies that X = NG(Q).

On the other hand, Q acts on D(Q × D(CG(Q))) trivially by Lemma 5.7. This forces
D(Q×D(CG(Q))) = D(CG(Q)).

Next, we claim that if U ∈ U(X) then U ≤ Q. Let U ∈ U(X). Then U acts onQ×D(CG(Q)),
and hence, on D(Q × D(CG(Q))) = D(CG(Q)). But by Lemma 5.7, this action is trivial. In
particular, U centralizes R forcing U ≤ Q.

Similarly, as Q acts on D(X) trivially by Lemma 5.7, if T ∈ T (X), then T ≤ D(CG(Q)).
Now, we can prove the lemma. We will make use of the characterization obtained in Proposi-

tion 3.4. Let B1 ∈ U(X). It follows from the above discussion that B1 ∈ U(Q). Let g ∈ NG(B1).
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By Fact 2.31, B1 ≤ Bx, where x can be taken to be in Q as B(Q×D(CG(Q))) = Q. As Bx and
B1 are in the same connected component of U(G), D(CG(B1)) = D(CG(B))x = D(CG(Q))x =
D(CG(Q)). Hence, g normalizes D(CG(Q)). But Q = B(CG(D(CG(Q)))), so g normalizes Q.

Let R1 ∈ T (X). By the above R1 ∈ T (D(CG(Q))). Let g ∈ NG(R1). This implies
B(CG(R1))

g = B(CG(R1). R1 ≤ Rx, where x can be taken to be in D(CG(Q)) as D(Q ×
D(CG(Q))) = D(CG(Q)). As R1 ≈ Rx, B(CG(R1)) = B(CG(R))

x = Qx = Q. Hence, g
normalizes Q and thus g ∈ NG(Q×D(CG(Q)). This finishes the proof. □

Lemma 6.6 Let B be a maximal unipotent 2-subgroup of G, such that B < Q. Suppose B1 is
another unipotent 2-subgroup of G such that B ∼ B1. Then B1 ≤ B.

Proof. By Proposition 5.15, D(CG(B)) = D(CG(B1)) and this implies that B1 centralizes
D(CG(B)), in particular, B1 centralizes d(R). Therefore, B1 ≤ Q. But Q ∼= PSL2(K). This
forces B1 ≤ B. □

Corollary 6.7 Let B be a maximal unipotent 2-subgroup of G, which is in Q. Suppose B1 is
another unipotent 2-subgroup of G such that B and B1 are in the same connected component of
U(G). Then B1 ≤ B.

In the remainder of our argument we consider various possibilities for the structure of L
and come back to Lemma 6.5 in all cases. After some preliminary analysis, the main argument
begins with Proposition 6.22 below.

Proposition 6.8 If T (L) is connected then G has a weakly embedded subgroup.

Proof. Let R1 be any 2-torus in L. Then, Q = B(CG(R)) = B(CG(R1)) by Corollary 5.24
since T (L) is connected, In particular, R1 centralizes Q. Therefore, d(R1) centralizes Q. But L
is a D-type group. Hence, L centralizes Q. Therefore, L ≤ D(CG(Q)) ≤ D(CG(B)) ≤ L, and
we have equality. Now, by Lemma 6.5, NG(Q×D(CG(Q))) is a weakly embedded subgroup of
G. □

Proposition 6.9 If L = D(CG(Q))O(L) and D(CG(Q)) < D(CG(B)) < L, then
CZ(O(L))(B) = 1.

Proof. Let A1 = CZ(O(L))(B). Suppose A1 ̸= 1. Then B(CG(A1)) < G. The subgroup
D(CG(B)) centralizes B and normalizes Z(O(L)). Hence, D(CG(B)) normalizes A1. But
L = D(CG(B))O(L). Hence, L normalizes A1. Therefore, L normalizes B(CG(A1)). By
Lemma 5.8, L centralizes B(CG(A1)). In particular, L centralizes B as B ≤ B(CG(A1)). But
this forces L = D(CG(B)), which contradicts our assumptions. □

Lemma 6.10 If L = D(CG(Q))O(L) and D(CG(Q)) < D(CG(B)) < L, then
B = B(CG(D(CG(B)))).

Proof. Clearly, B(CG(D(CG(B)))) ≤ B(CG(D(CG(Q)))). By the Galois connection,
B(CG(D(CG(Q)))) = Q. As D(CG(Q)) < D(CG(B)), we have the following strict inequal-
ity: B(CG(D(CG(B)))) < B(CG(D(CG(Q)))). This forces B(CG(D(CG(B)))) = B. □

Proposition 6.11 If L = D(CG(Q))O(L) and D(CG(Q)) < D(CG(B)) < L, then CO(L)(B)◦

is divisible.

Proof. By Fact 2.11, O(L) = E ∗ D, where E is of bounded exponent and D is divisi-
ble. We may assume that E is connected. Let A1 = CE(B)◦. Suppose A1 ̸= 1. Let
A2 = NE(A1)

◦. D(CG(B)) normalizes A1. Therefore, D(CG(B)) normalizes B(CG(A1)). By
Lemma 5.8, this action is trivial. Hence, B(CG(A1)) ≤ B(CG(D(CG(B)))). By Lemma 6.10,
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B(CG(D(CG(B)))) = B. But B ≤ B(CG(A1)). Therefore, we conclude B = B(CG(A1)) =
B(CG(D(CG(B)))).

A consequence of the last paragraph is that A2 normalizes B. B ⋊A2 is a nilpotent group,
because otherwise, using Fact 2.18 we can interpret in B⋊A2 an algebraically closed field K and
K+ is isomorphic to a definable section of B. Therefore K is of characteristic 2. But a definable
section of A2 is isomorphic to an infinite subgroup of K∗ and the “no bad fields” hypothesis
implies that this subgroup is K∗ itself. But as A2 is a nilpotent 2⊥-group of bounded exponent,
the multiplicative subgroup of this algebraically closed field would have Sylow p-subgroups with
infinitely many elements of order p (Fact 2.28). This is impossible by Fact 2.27. Hence, B⋊A2

is nilpotent and by Fact 2.20, A2 centralizes B. Therefore, A2 = A1. As E is nilpotent of
finite Morley rank, we conclude that E = A2 = A1. This forces Z(E) ≤ CZ(O(L))(B). But
this last group is trivial by Proposition 6.9, a contradiction. As a result, A1 = 1 and therefore
CO(L)(B)◦ is divisible. □

Corollary 6.12 If L = D(CG(Q))O(L) and D(CG(Q)) < D(CG(B)) < L, then (O(L) ∩
D(CG(B)))◦ is divisible and torsion free.

Proof. By Fact 2.11, (O(L) ∩D(CG(B)))◦ = E ∗D, where E is a definable, connected group
of bounded exponent and D is a definable, divisible group. If E ̸= 1 then CO(L)(B)◦ has
a nontrivial definable subgroup of bounded exponent. But this contradicts Proposition 6.11.
Therefore, (O(L) ∩ D(CG(B)))◦ is divisible. The torsion part of (O(L) ∩ D(CG(B)))◦ is also
contained in the torsion divisible part of O(L). But, by Fact 2.12, this last subgroup of O(L)
is central in O(L). Now, Proposition 6.9 forces the torsion part of (O(L) ∩D(CG(B)))◦ to be
trivial. □

Proposition 6.13 If L = D(CG(Q))O(L) and D(CG(Q)) < D(CG(B)) < L, then B =
B(CG(CO(L)(B))).

Proof. As D(CG(B)) normalizes CO(L)(B), it normalizes B(CG(CO(L)(B))). Thus, by Lemma
5.8, D(CG(B)) centralizes B(CG(CO(L)(B))). Therefore,

B(CG(CO(L)(B))) ≤ B(CG(D(CG(B)))).

But by Lemma 6.10, this last subgroup is equal to B. □

Proposition 6.14 If L = D(CG(Q))O(L), D(CG(Q)) < D(CG(B)) < L, and the group
NO(L)(CO(L)(B))◦ is torsion-free, then B ⋊NO(L)(CO(L)(B))◦ is nilpotent.

Proof. Let A = NO(L)(CO(L)(B))◦. Clearly B ⋊ A is a solvable group. Suppose it is not
nilpotent. Then we can interpret in B ⋊ A an algebraically closed field K using Fact 2.18.
K+ is isomorphic to a definable section of B. Therefore, K is of characteristic 2. As there
are no bad fields in the environment, we conclude that a definable section of A is isomorphic
to the multiplicative group of this field, in particular A is not torsion-free by Fact 2.22. This
contradiction shows that B ⋊A is nilpotent. □

Lemma 6.15 If L is solvable, D(CG(Q)) < D(CG(B)) < L and T (L) is not connected, then
L = d(R)O(L), D(CG(B)) = d(R)(O(L) ∩D(CG(B)))◦ and O(L) ̸= 1. L and D(CG(B)) are
not nilpotent.

Proof. T (L) is not connected implies that L is not nilpotent. By Lemma 5.4, we conclude that
L = d(R)F (L)◦. As T (L) is not connected, F (L)◦ = O(L). Hence, we have L = d(R)O(L).
This implies D(CG(B)) = d(R)(O(L)∩D(CG(B)))◦. Also (O(L)∩D(CG(B)))◦ ̸= 1 as d(R) ≤
D(CG(Q)) < D(CG(B)). We also claim that D(CG(B)) is not nilpotent because otherwise
D(CG(B)) = d(R) and D(CG(Q)) = D(CG(B)), a contradiction. □
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Proposition 6.16 If L is nonsolvable, T (L) is not connected and D(CG(Q)) < D(CG(B)) <
L, then L = D(CG(B))O(L) = D(CG(Q))O(L).

Proof. By Corollary 5.28, L/O(L) ∼= (P )SL2(K), where K is an algebraically closed field of
characteristic different from 2. We will use -notation to denote quotients by O(L).

As R ∼= R, R is a 2-torus of L. Moreover, as the 2-tori of (P )SL2(K), where K is an
algebraically closed field of characteristic different from 2, are all 1-dimensional, R is a maximal
2-torus of L. R ≤ D(CG(Q)).

We claim thatD(CG(Q)) is a Zariski closed subgroup of L. Let R1 be a 2-torus ofD(CG(Q)).
Clearly d(R1) ≤ d(R1). For the other inclusion we argue as follows. d(R1) = d(R1O(L)) by
Fact 2.8. But d(R1O(L)) = d(R1)O(L). Therefore, d(R1) = d(R1). Therefore, D(CG(Q)) =
⟨d(R1) : R1 is a 2-torus centralizing Q⟩. Thus, by Fact 2.42, it is sufficient to show that d(R1),
where R1 is a 2-torus centralizing Q, is a closed subgroup of L. The Zariski closure of R1 in L
is isomorphic to K∗ and thus the “no bad fields” hypothesis implies that d(R1) and the Zariski
closure of R1 are the same group.

Therefore, D(CG(Q)) can be equal to three different closed subgroups of L: d(R), a Borel
subgroup Ud(R), or L. We will show that the first two possibilities cannot happen.

i) D(CG(Q)) = Ud(R).
Let v ∈ I(L) such that v inverts d(R). The element v acts on RO(L). By Fact 2.31,

there exists g ∈ O(L) such that Rv = Rg and vg−1 ∈ NL(R). This implies that vg−1 nor-
malizes B(CG(R)) = Q. Hence, vg−1 normalizes D(CG(Q)), and so v normalizes D(CG(Q)).
But v ̸∈ Ud(R), which contradicts the fact that Borel subgroups are self-normalizing. Hence,
D(CG(Q)) ̸= Ud(R).

ii) D(CG(Q)) = d(R).
Let v be as in part i). Then we also get g ∈ O(L) such that vg−1 normalizes R, Q and

D(CG(Q)).
In L, we can find W < R⟨v⟩, such that W ∼= Q8 or Z2 × Z2, depending on whether

L ∼= SL2(K) or PSL2(K) respectively. We take an element x of order 3 from NL(W ).

We claim that L = ⟨d(R), d(R)x⟩.
To illustrate we give an example in the SL2(K) situation.

W =

〈
u =

(
i 0
0 −i

)
, v =

(
0 −1
1 0

)
, w =

(
0 −i
−i 0

) 〉
,

x =
1

2

(
−1 + i −1− i
1− i −1− i

)
where i2 = −1. One can choose x so that

ux = v, vx = w, wx = u.

Let L1 = ⟨d(R), d(R)x⟩. We have NL(d(R)) = d(R) ⋊ ⟨v⟩ ≤ L1. Therefore,L1 cannot be a

Borel subgroup of L. As L1 is connected, L1 = L.
In L, we may assume that WO(L) = O(L) ⋊W , where W ∼= W . As x normalizes W , x

normalizes O(L)⋊W . By Fact 2.31, we can find h ∈ O(L) such that xh−1 ∈ NL(W ).
By taking conjugates, we may assume W < R⟨v⟩. Then W normalizes R. This implies W

normalizes Q. Therefore, using Fact 2.39, we may assumeW is a group of inner automorphisms
of Q. As W centralizes T , W can be seen as a subgroup of T (maximal tori are self-centralizing
in reductive algebraic groups). But Q is an algebraic group over an algebraically closed field of
characteristic 2, thus T is a 2⊥-group. Therefore, the action of W on Q is trivial. Hence, we
get Q ≤ B(CG(W )).

We claim that Q = B(CG(W )). Suppose Q < B(CG(W )). Then there is a unipo-
tent 2-subgroup B1 in B(CG(W )) \ Q. By Corollary 6.7, B1 cannot be in the same con-
nected component of U(G) as any unipotent 2-subgroup of Q. Therefore by Proposition 5.21,
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B(CG(W )) ∼= PSL2(L), where L is an algebraically closed field of characteristic 2. But Q
contains maximal unipotent 2-subgroups of G. In particular, these are maximal unipotent 2-
subgroups of B(CG(W )). As B(CG(W )) ∼= PSL2(L), where L is an algebraically closed field of
characteristic 2, these subgroups correspond to root subgroups of B(CG(W )). But then Q con-
tains two opposite root subgroups of B(CG(W )). This forces Q = B(CG(W )), a contradiction.

Since xh−1 normalizes W and vg−1 normalizes R, ⟨d(R), xh−1, vg−1⟩ normalizes Q. Let
L2 = ⟨d(R), xh−1, vg−1⟩. Then L2 = L. As L2 normalizes Q, L2 normalizes D(CG(Q)).
Therefore, L2 normalizes D(CG(Q)). But D(CG(Q)) = d(R) and L2 = L ∼= (P )SL2(K). This
is a contradiction because (P )SL2(K) cannot have a large normal subgroup. □

Proposition 6.17 If L is solvable, T (L) is not connected, and D(CG(Q)) < D(CG(B)) < L,
then d(R) has p-torsion for every prime p.

Proof. By Lemma 6.15 and Corollary 6.12, (O(L) ∩ D(CG(B)))◦ is divisible and torsion-
free. As D(CG(B)) is nonnilpotent (Lemma 6.15) and solvable, by Fact 2.18 an algebraically
closed field K is interpretable in it. K+ is a definable section of (O(L) ∩ D(CG(B)))◦. Since
(O(L) ∩ D(CG(B)))◦ is torsion-free, K is of characteristic 0. The “no bad fields” hypothesis
implies that a definable section of d(R) is isomorphic to K∗ and, using Fact 2.22, we conclude
that d(R) has p-torsion for every prime p. □

Lemma 6.18 Let G be a D-type tame group of finite Morley rank. Assume G = G′C, where
C is a definable 2⊥-subgroup of G. Then G is perfect.

Proof. G/G′ is a 2⊥-group. Hence, all the tori are in G′, forcing G = G′. □

Proposition 6.19 Let G be a tame group of finite Morley rank, T a definable divisible abelian
subgroup of G, and O a definable, connected, nilpotent, torsion-free subgroup of G. Assume T
normalizes O. Assume also that T does not have p-torsion for some prime p. Then H = TO
is nilpotent.

Proof. Suppose that H is not nilpotent. Then we can interpret in H an algebraically closed
field K, using Fact 2.18. As no bad fields are interpretable in the environment, a definable
section of T will be isomorphic to K∗. This forces char(K) = p, where p is a prime missed by
T . K+ is isomorphic to a definable section of O. Hence, it is torsion-free by Fact 2.22. This
yields a contradiction. Therefore, H is nilpotent. □

Proposition 6.20 If L is nonsolvable, T (L) is not connected and D(CG(Q)) < D(CG(B)) <
L, then L/O(L) ∼= (P )SL2(K) where K is an algebraically closed field of characteristic 0.

Proof. We will use -notation to denote quotients by O(L). By Proposition 6.16, D(CG(B)) ∼=
L. By Corollary 5.28 we know that L/O(L) ∼= (P )SL2(K) where the characteristic of K is dif-
ferent from 2. Suppose the characteristic of K is not 0. Then it is at least 3. D(CG(B)) =
⟨d(S)O(D(CG(B)))/O(D(CG(B))) : S is a 2-torus of D(CG(B))⟩. Proposition 6.19 and Corol-
lary 6.12 imply that d(S)O(D(CG(B))) is nilpotent. Thus SO(D(CG(B))) = S⊕O(D(CG(B))).
As S is an arbitrary 2-torus of D(CG(B)), and D(CG(B)) is a D-type group, O(D(CG(B))) is a
central subgroup ofD(CG(B)). AsD(CG(B)) ∼= (P )SL2(K), we conclude that O(D(CG(B))) =
Z(D(CG(B)))◦. Therefore,

D(CG(B))/Z(D(CG(B)))◦ ∼= (P )SL2(K)

where K is an algebraically closed field of characteristic at least 3. By Lemma 6.18, D(CG(B))
is a perfect group. Theorem 4.2 implies that O(D(CG(B))) = 1. But this forces D(CG(B)) =
D(CG(Q)), which contradicts our assumptions. This finishes the proof of the claim. □
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Lemma 6.21 Let G = d(T )E be connected solvable group of finite Morley rank, where T is a
p-torus and E is a nilpotent group of bounded exponent a power of p. Then G is nilpotent.

Proof. Suppose G is nonnilpotent. Then by Fact 2.18, we can interpret an algebraically closed
field K in G so that a definable section of E is isomorphic to K+. This implies that the
characteristic of K is p. On the other hand, a definable section of d(T ) is isomorphic to an
infinite subgroup of K∗. As the characteristic of K is p, T centralizes E. Therefore, d(T )
centralizes E. This forces G to be nilpotent, a contradiction. □

Proposition 6.22 If T (L) is not connected and D(CG(Q)) < D(CG(B)) < L, then O(L) is
divisible.

Proof. We carry out a case-by-case analysis.
L is solvable: By Lemma 6.15, L is not nilpotent. By Theorem 2.11, O(L) = E ∗ D,

where E is of bounded exponent and D is divisible. d(R)E is a connected solvable group.
Suppose E ̸= 1. d(R) has p-torsion for every prime p by Proposition 6.17. Suppose p is an odd
prime such that E has a nontrivial Sylow p-subgroup, say Ep. By Lemma 6.21, Ep centralizes
the p-torus Tp of d(R). As Ep centralizes Tp, it normalizes B(CG(Tp)). By Lemma 5.10, Ep

centralizes B(CG(Tp)). In particular, Ep centralizes B. But CZ(O(L))(B) = 1 by Proposition
6.9 and Lemma 6.15. This is a contradiction. Therefore E = 1.

L is nonsolvable: Let D◦ be the divisible part of O(L). The quotient (L/D◦)/O(L/D◦) =
(L/D◦)/(O(L)/D◦) ∼= L/O(L) ∼= (P )SL2(K), where K is an algebraically closed field of char-
acteristic 0, by Proposition 6.20. L/D◦ is generated by d(S)D◦/D◦, where S ranges over all the
2-tori of L. Consider the action of d(S)D◦/D◦ on O(L/D◦). The group d(S)D◦/D◦O(L/D◦)
is nilpotent, because otherwise, using Fact 2.18 and Proposition 6.20, we can interpret an alge-
braically closed field of characteristic 0 in it in such a way that a definable section of O(L/D◦)
is isomorphic to the additive group of this field. But O(L/D◦) is of bounded exponent. There-
fore, the action of d(S)D◦/D◦ on O(L/D◦) is trivial. As S is an arbitrary 2-torus in L, we
conclude that O(L/D◦) is central in L/D◦. Arguments similar to the ones used in the proof of
Proposition 6.20 show that O(L/D◦) = 1. This implies that O(L) = D◦. □

Proposition 6.23 If T (L) is not connected and D(CG(Q)) < D(CG(B)) < L, then O(L) is
torsion-free.

Proof. We carry out a case-by-case analysis.
L is solvable: By Lemma 6.15, L is not nilpotent. By Proposition 6.22, O(L) is di-

visible. By Proposition 5.3, [L,O(L)] is torsion-free. Clearly, O(L)/[L,O(L)] is central in
L/[L,O(L)]. Also (L/[L,O(L)])/(O(L)/[L,O(L)]) ∼= L/O(L) and this last group is abelian
because L = d(R)O(L) by Lemma 6.15. Therefore, L/[L,O(L)] is a nilpotent group. Since L
is a D-type group, so is L/[L,O(L)] and L/[L,O(L)] = d(R1/[L,O(L)]), where R1/[L,O(L)] is
a maximal 2-torus of L/[L,O(L)]. As L is solvable, Fact 2.33 ii) implies that L/[L,O(L)] =
d(R)[L,O(L)]/[L,O(L)]. Thus L = d(R)[L,O(L)] and O(L) = (O(L) ∩ d(R))◦[L,O(L)]. By
Corollary 6.12, (O(L)∩ d(R))◦ is torsion-free. Thus Fact 2.26 implies that O(L) is torsion-free.

L is nonsolvable: Proposition 6.22 and Fact 2.12 imply that O(L) = A1 × A2, where
A1 and A2 are the torsion and the torsion-free parts of O(L) respectively. By Proposition 5.3,
[L,O(L)] is torsion free. We have by Proposition 6.20

(L/[L,O(L)])/(O(L)/[L,O(L)]) ∼= L/O(L) ∼= (P )SL2(K),

where K is an algebraically closed field of characteristic 0. Clearly, O(L)/[L,O(L)] is central in
L/[L,O(L)]. We have a central extension of finite Morley rank of a simple algebraic group by
a group of finite Morley rank. By Proposition 6.18, L/[L,O(L)] is a perfect group. Using argu-
ments similar to the ones in the proof of Proposition 6.20, we conclude that O(L)/[L,O(L)] = 1.
This implies that L/[L,O(L)] ∼= (P )SL2(K) But L/[L,O(L)] has an isomorphic copy of A1.
Therefore, A1 = 1 and O(L) is torsion-free. □
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Theorem 6.24 A simple tame, K∗-group G of mixed type contains a weakly embedded sub-
group.

Proof. Let M1 denote the stabilizer of a connected component of U(G). By Proposition 6.3,
if NG(T ) ≤ M1 for any 2-torus of M1, then M1 is a weakly embedded subgroup. If this is
not the case then there is a 2-torus R in M1 such that NG(R) ̸≤ M1. By Proposition 6.4,
U(B(NG(R))) is not connected. Fact 5.21 implies that Q = B(CG(R)) ∼= PSL2(K), where K
is an algebraically closed field of characteristic 2. Then, as it was discussed after Proposition
6.4, NQ(B) = BT , where T is a maximal 2-torus in Q and

D(CG(Q)) ≤ D(CG(B)) ≤ L = D(CG(T )).

By Proposition 6.8, if T (L) is a connected graph then G has a weakly embedded subgroup.
Therefore, we may assume that T (L) is not a connected graph.

If D(CG(Q)) = D(CG(B)) then by Lemma 6.5, G has a weakly embedded subgroup. There-
fore, we may assume thatD(CG(Q)) < D(CG(B)). IfD(CG(B)) = L then L = D(CG(B

w)) also
where w is an involution in Q inverting T . This implies that L centralizes Q as Q = ⟨B,Bw⟩.
Therefore, L = D(CG(Q)). This contradicts our assumption that D(CG(Q)) < D(CG(B)).
Hence, D(CG(Q)) < D(CG(B)) < L.

We will show that D(CG(Q)) < D(CG(B)) < L cannot happen. Let A = NO(L)(CO(L)(B)).
A is connected since by Proposition 6.23, O(L) is torsion-free. We have CO(L)(B) < O(L)
because otherwise L = D(CG(B)), contrary to our assumptions. Hence, [O(L) : CO(L)(B)] = ∞
by Lemma 6.23. As O(L) is nilpotent, by Fact 2.14, [NO(L)(CO(L)(B)) : CO(L)(B)] = ∞. By
Proposition 6.23, A is torsion-free. This, together with Proposition 6.14, implies that B ⋊A =
B ⊕A. Hence, [NO(L)(CO(L)(B)) : CO(L)(B)] = 1, a contradiction. □

7 From Weak to Strong Embedding

In this section we will finish the proof of Theorem 1.7. We will continue working in the hypo-
thetical simple tame K∗-group G of mixed type. In the previous section we showed that such
a group has a weakly embedded subgroup. The main result in this section will show that this
weakly embedded subgroup is a strongly embedded subgroup. This will yield a contradiction for
reasons we will mention shortly.

Definition 7.1 A proper definable subgroup M of a group G of finite Morley rank is said to be
a strongly embedded subgroup if it satisfies the following conditions:

i) M contains involutions.

ii) For every g ∈ G \M , M ∩Mg does not contain involutions.

The following are two characterizations of strongly embedded subgroup s:

Fact 7.2 ([6], [11]) Let G be a group of finite Morley rank with a proper definable subgroup
M . Then the following are equivalent:

i) M is a strongly embedded subgroup.

ii) I(M) ̸= ∅, CG(i) ≤ M for any i ∈ I(M), and NG(S) ≤ M for any Sylow 2-subgroup S of
M .

iii) I(M) ̸= ∅, and NG(S) ≤M for any nontrivial 2-subgroup S of M .

The following fact is crucial for our argument:

Fact 7.3 ([6], [11]) Let G be a group of finite Morley rank with a strongly embedded subgroup
M . Then I(G) is a single conjugacy class in G, and I(M) is a single conjugacy class in M .
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The following proposition shows that the proof of Theorem 1.7 will be over once we have
shown that G has a strongly embedded subgroup.

Proposition 7.4 ([16]) If a group G of finite Morley rank has a single conjugacy class of
involutions then the connected component of any Sylow 2-subgroup is either of bounded exponent
or divisible.

Proof. Let S be Sylow 2-subgroup of G. S◦ = B ∗ T of by Fact 1.5 ii). We will show that we
cannot have B ̸= 1 and T ̸= 1. Suppose towards a contradiction that B ̸= 1 and T ̸= 1. By
Fact 2.27, T contains finitely many involutions As I(B) is infinite, we can find u ∈ I(S◦ \ T )
and v ∈ I(T ). Since these are conjugate in G, by Fact 2.32, there exists g ∈ NG(T ) such that
u = vg. But this implies that u ∈ T , contradicting the choice of u. □

Theorem 7.5 Let G be a simple tame K∗-group of mixed type with a weakly embedded subgroup
M . Then M is a strongly embedded subgroup.

Proof. Proposition 3.4 and Fact 7.2 ii) imply that it is sufficient to prove that for any t ∈ I(M),
CG(t) ≤ M . Suppose towards a contradiction that there is an involution t ∈ I(M) such that
CG(t) ̸≤M . Let H = CG(t).

1 H ∩M has an infinite Sylow 2-subgroup.

Proof of 1. Let S be a Sylow 2-subgroup of M such that t ∈ S. S◦ = B ∗ D, where B ̸= 1
and D ̸= 1. The involution t acts on the definable subgroup B. As there are infinitely many
involutions in B, t cannot fix finitely many elements of B (Fact 2.38). □

It follows from (1) that M ∩ H is a weakly embedded subgroup of H, and in particular
contains a Sylow 2-subgroup of H.

Note that it follows from the proof of (1) that B ∩ H and thus H contains an infinite
elementary abelian 2-group. In particular, B(H) ̸= 1.

2 H is not solvable.

Proof of 2. Suppose H is solvable. As B(H) ≤ H◦, we conclude using Fact 2.35 that B(H)
is a unipotent 2-subgroup normal in H. As B(H) � H, B(H) is contained in every Sylow
2-subgroup of H and hence, in H ∩ M . As H ∩ M is a weakly embedded subgroup of H,
H ≤ NH(B(H)) ≤ H ∩M , a contradiction. □

3 H◦ = L × O(H), where L ∼= PSL2(K) and the characteristic of K is 2. In particular, H
does not contain 2-tori and t ∈ H \H◦.

Proof of 3. Lemma 5.20, (2) and the fact that H has nontrivial unipotent 2-subgroups imply
that H◦/O(H) ∼= PSL2(K), where K is an algebraically closed field of characteristic 2. There-
fore, H◦ = B(H)O(H). B(H) ∩M is a weakly embedded subgroup of B(H). In particular,
U(B(H)) is not connected. Therefore, by Proposition 5.21, B(H) ∼= PSL2(K), where K is an
algebraically closed field of characteristic 2. This proves the claim. □

Let Y = D(M).

4 Y is solvable.

Proof of 4. As CM (t) ≤ H, CM (t) does not contain 2-tori. Hence, CY (t) does not contain
2-tori either. Therefore, by Lemma 5.13, we conclude that Y is solvable. □
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5 M ∩ L contains a Sylow 2-subgroup of L.

Proof of 5. (1) and the fact that H◦ = L × O(H), where L ∼= PSL2(K) with char(K) = 2,
imply that L∩M contains a Sylow 2-subgroup which is an infinite elementary abelian 2-group
A. If A ≤ A1, where A1 is a Sylow 2-subgroup of L, then A1 centralizes A as A1 is abelian.
But A is a subgroup of M and M is a weakly embedded subgroup. Therefore, A1 is a subgroup
of M . But A is a Sylow 2-subgroup of L ∩M . Therefore, A1 = A. □

We fix A, a Sylow 2-subgroup of L in M ∩ L. NL(A) = A ⋊ T , where T is a torus. Let
w ∈ NL(T ) be such that w inverts T . By Lemma 5.7, D(CG(A)) ≥ Y . Moreover, as T
normalizes both A and Aw, we have ⟨D(CG(A)), D(CG(A

w))⟩ ≤ D(CG(T )). We will use R to
denote D(CG(T )). We can summarize the above discussion as follows:

D(M) = Y = D(CG(A)) ≤ R = D(CG(T ))

6 R is solvable.

Proof of 6. As T ≤ L ≤ CG(t) and R is a characteristic subgroup of CG(T ), t ∈ NG(R).
Moreover, since CR(t) ≤ CG(t), CR(t) does not contain 2-tori. By Lemma 5.13, R is solvable.
□

7 R = Y .

Proof of 7. By (6), R and Y are both solvable. By Lemma 5.4, R and Y can be factored as
a product of their Fitting subgroups and the definable closure of one of their maximal 2-tori.
As M is a weakly embedded subgroup, Proposition 3.2 ii) implies that Y contains a maximal
2-torus T1 of G. Therefore, we have Y = d(T1)F (Y )◦ and R = d(T1)F (R)

◦.
Suppose that Y < R. We will reach a contradiction. If R is nilpotent, then we immediately

conclude that R = Y . Therefore, R is nonnilpotent.
Note that R ≰ M because otherwise R = Y . This forces F (R)◦ to be a 2⊥-group because

otherwise, by Lemma 5.5, F (R)◦ would contain a nontrivial 2-torus Tc. As Tc � R, Tc is
centralized by R, and therefore by T1. This forces Tc ≤M and thus R ≤M , a contradiction to
R ≰M . This implies R = d(T1)O(R) and Y = d(T1)(Y ∩O(R)).

7.1 If t inverts T1 (equivalently d(T1)), then CO(R)(t) is infinite and CO(R)(t)
◦ ≤M .

Proof of 7.1. The involution t centralizes T . Therefore, it acts on R. As O(R) is characteristic
in R, t acts on O(R) also. If CO(R)(t) is finite then t inverts O(R) by Fact 2.37. Then by
Proposition 2.51, CR/O(R)(t) = CR(t)O(R)/O(R). As t inverts d(T1), t inverts R/O(R). Hence,
CR/O(R)(t) is finite. But

CR(t)O(R)/O(R) ∼= CR(t)/CO(R)(t).

Hence, CR(t)/CO(R)(t) is finite. As CO(R)(t) is finite, CR(t) is finite also, which forces R to be
abelian. This contradicts our assumption that R is not nilpotent. Hence, CO(R)(t) is infinite.

The connected group CO(R)(t)
◦ acts on L and centralizes T . The action of CO(R)(t)

◦ on L
is by inner automorphisms. Therefore, CO(R)(t)

◦ normalizes A. This forces CO(R)(t)
◦ ≤ M as

M is a weakly embedded subgroup. □

7.2 CZ(O(R))(A) = 1.

Proof of 7.2. Let C1 = CZ(O(R))(A). Suppose C1 ̸= 1. Then B(CG(C1)) < G. Note that
A ≤ B(CG(C1)). As R = d(T1)O(R) and d(T1) ≤ CG(A), R normalizes C1. Hence, by Lemma
5.8, R centralizes B(CG(C1)), and in particular it centralizes A. But M is a weakly embedded
subgroup, which forces R ≤M . This contradicts our assumption on R. □
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7.3 O(R) is a divisible group.

Proof of 7.3. By Fact 2.11, O(R) = C ∗D, where C is definable, connected and of bounded
exponent and D is definable and divisible. Suppose C ̸= 1. Then the action of d(T1) on C
is nontrivial because, otherwise, d(T1)D is a definable subgroup of R which contains all the
2-tori of R. But R is a D-type group and thus by Lemma 5.2, R = d(T1)D. Therefore,
O(R) = (d(T1) ∩O(R))D which forces C = 1 (Facts 2.11, 2.27 and 2.28). This contradicts our
assumption on C. Therefore, C has an infinite p-subgroup Cp on which d(T1) acts nontrivially.

We claim that d(T1) does not have p-torsion. Suppose Tp is the nontrivial p-torus of d(T1).
By Lemma 6.21, Cp centralizes Tp. Thus Cp normalizes B(CG(Tp)). This last subgroup contains
A. By Lemma 5.10, Cp centralizes B(CG(Tp)). Hence, Cp centralizes A. But Cp∩Z(O(R)) ̸= 1.
This contradicts (7.2). Therefore Tp = 1.

As d(T1) has no p-torsion, an application of Fact 2.18 and the “no bad fields” assumption
imply that d(T1)D is nilpotent. T1 is central in d(T1)D. This implies d(T1)D centralizes d(T1).
Thus d(T1)C contains all the 2-tori of R. But R is a D-type group. Therefore, by Lemma 5.2
R = d(T1)C. In particular, this implies that D < d(T1).

We claim that (C ∩M)◦ ̸= 1. Suppose to the contrary that (C ∩M)◦ = 1. Then R ∩M =
d(T1)(C ∩M). The subgroup C ∩M is normal in R ∩M because d(T1) normalizes both C
and M . Therefore, the connected group d(T1) centralizes M ∩ C. We already know that
Y = d(T1)(Y ∩ O(R)) = d(T1)(Y ∩ CD). D ≤ d(T1) ≤ Y implies that Y = d(T1)D(Y ∩ C) =
d(T1)(Y ∩ C). Y ∩ C ≤M ∩ C which we have assumed is finite. But Y = D(M) is connected.
Therefore, Y = d(T1). This implies that t acts on d(T1). As H = CG(t) does not contain
nontrivial 2-tori, Lemma 5.13 implies that t inverts d(T1). By (7.1), CO(R)(t) is infinite and
CO(R)(t)

◦ ≤M . As O(R) = CD and C∩M is finite, any element of CO(R)(t)
◦ can be written as

dci where d ∈ D and ci ∈ C∩M = {c1, · · · , cm}. There exists c ∈ C∩M such that {djc : c ∈ N}
is an infinite set of distinct elements of CO(R)(t)

◦. (d1c)(djc)
−1 = d1d

−1
j ∈ CO(R)(t)

◦ ∩ D for
all j ∈ N. This implies that CO(R)(t)

◦ ∩D ̸= 1, a contradiction. Therefore, (C ∩M)◦ ̸= 1.
The subgroup (C∩M)◦ centralizes A by Lemma 5.10. The subgroup NC(CC(A)) normalizes

B(CG(CC(A))). On the other hand, Y ≤ D(NG(CC(A))) because Y centralizes B(M) and Y
normalizes C. This implies B(CG(CC(A))) centralizes Y and therefore, B(CG(CC(A))) ≤ M .
But then NC(CC(A)) ≤ C ∩ M . This forces [NC(CC(A)) : CC(A)] < ∞, so by Fact 2.14,
CC(A) = C, C < M and thus R < M , a contradiction. This final contradiction shows that
O(R) is divisible. □

7.4 CO(R)(A) = 1.

Proof of 7.4. Suppose CO(R)(A) ̸= 1. Then A ≤ B(CG(CO(R)(A))) < G. By Corollary 5.8,
d(T1) centralizes B(M) and in particular A. As d(T1) normalizes O(R), we conclude that d(T1)
normalizes CO(R)(A). Therefore, d(T1) normalizes B(CG(CO(R)(A)). By Corollary 5.8, d(T1)
centralizes B(CG(CO(R)(A)). As M is weakly embedded, B(CG(CO(R)(A)) < M . Therefore,
NO(R)(CO(R)(A)), which also normalizes B(CG(CO(R)(A)), is a subgroup of M .

An immediate consequence of the above paragraph is that Z(O(R)) < M . This also implies
that O(R) is not abelian. Therefore, (O(R)′ ∩ Z(O(R)))◦ is an infinite, definable, connected
subgroup of M ∩ O(R). By (7.3) and Fact 2.10, (O(R)′ ∩ Z(O(R)))◦ is divisible abelian.
Moreover, (O(R)′ ∩ Z(O(R)))◦ is torsion-free, because [R,O(R)] is torsion-free by Proposition
5.3. By Lemma 5.11, (O(R)′∩Z(O(R)))◦ centralizes B(M) and in particular A. This contradicts
(7.2). Therefore, CO(R)(A) = 1. □

(7.4) implies that O(R)∩Y = 1 because O(R)∩Y ≤ CO(R)(A). This implies that Y = d(T1).
Therefore, t acts on d(T1). AsH = CG(t) does not contain nontrivial 2-tori, Lemma 5.13 implies
that t inverts d(T1). By (7.1), CO(R)(t) is infinite and CO(R)(t)

◦ ≤M .
Being a subgroup of H = CG(t), CO(R)(t)

◦ normalizes L. As CO(R)(t)
◦ ≤ M also, it

normalizes M ∩ L. M ∩ L has a unique Sylow 2-subgroup, namely A. Therefore, we conclude
that CO(R)(t)

◦ normalizes A.
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Another consequence of (7.4) is that the action of CO(R)(t)
◦ on A is faithful. The facts

that the action of T on A \ {1} is transitive and that T normalizes CO(R)(t) imply that the
action of CO(R)(t)

◦ on A is fixed-point-free. Therefore, we have A ⋊ CO(R)(t)
◦, a centerless,

hence nonnilpotent solvable group. By Fact 2.18, we can interpret in this group an algebraically
closed field K of characteristic 2. A definable section of CO(R)(t)

◦ is isomorphic to K∗ (“no
bad fields”). This implies that CO(R)(t)

◦ has some torsion in it (Fact 2.22). We will show that
this is not possible.

Now, we consider the group [R,O(R)]. It is nontrivial as R is assumed to be nonnilpotent.
By Proposition 5.3, [R,O(R)] is torsion-free. Clearly, O(R)/[R,O(R)] is central in R/[R,O(R)].

(R/[R,O(R)])/(O(R)/[R,O(R)]) ∼= R/O(R) ∼= d(T1).

This forces R/[R,O(R)] to be a nilpotent group. But this is also a D-type group, so R/[R,O(R)]
is the definable closure of a 2-torus. Hence, using the solvability of R and Fact 2.33 ii), we
conclude R/[R,O(R)] = d(T1)[R,O(R)]/[R,O(R)]. This implies R = d(T1)[R,O(R)]. As
O(R) ∩ Y = 1, d(T1) ≤ Y and [R,O(R)] ≤ O(R), O(R) = [R,O(R)]. Therefore, O(R) is
torsion-free, which contradicts the above conclusion on CO(R)(t)

◦. This last contradiction fin-
ishes the proof of (7). □

(7) implies that D(CG(A)) = Y = R. Therefore, D(CG(A
w)) = R. Hence, w normalizes

Y forcing w ∈ M . This means L = ⟨A,w⟩ ≤ M . On the other hand, O(H) ≤ M because
O(H) centralizes L and in particular A, which is a unipotent 2-subgroup of M . Therefore, we
conclude that H◦ ≤M .

H◦ contains the connected components of all the Sylow 2-subgroups of H. Therefore, by
the Frattini argument H = NH(A)H◦, where A is a Sylow 2-subgroup of H◦. As M is a weakly
embedded subgroup, we conclude that H ≤ M . This contradiction finishes the proof of the
theorem. □

Now Theorem 1.7 follows from Proposition 7.4 and Theorem 7.5.
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