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Abstract. For C a finite set of cycles, we show that if there is
a universal C-free graph then C consists precisely of all the odd
cycles of order less than some specified bound. The converse was
proved by Komjáth, Mekler, and Pach (Israel J. Math 64 (1988),
158–168).

1. Introduction

R. Rado observed that among the countable graphs there is a univer-
sal one [9]. That is, there is a countable graph such that every count-
able graph is isomorphic to one of its induced subgraphs. Many similar
problems have been considered in the graph theoretic literature. Most
results of this type concern classes R of countable graphs which omit
a class C of forbidden subgraphs. We may call a such a class C a Rado
constraint if the class of countable C-free graphs has a universal mem-
ber.

The investigation in this paper is motivated by the following: Komjáth,
Mekler, and Pach proved that for every odd positive integer k ≥ 3,
there is a universal countable graph for the class of graphs omitting
odd cycles of lengths at most k. We will show that the only Rado con-
straints consisting of finitely many cycles are of this form. It is known
however that there is also a universal C-free graph if C is the family of
cycles of length greater than some fixed lower bound, so the question of
the characterization of Rado constraints consisting of infinitely many
cycles remains open.

In particular the only Rado constraint consisting of a single cycle is
{C3}. Henson observed the existence of such a univeral graph (more
generally, any clique gives a Rado constraint) and Pach showed that C4

is not a Rado constraint [5]. The negative result was extended to Cn

for n ≥ 4 in [I]. The method of that paper will be applied once more
here.
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The result accordingly is as follows.

Theorem 1. Let C be a finite set of cycles. If there is a countable uni-
versal graph for the class of graphs omitting C, then C = {C3, C5, . . . , C2k+1}
for some k .

It was also shown previously that the particular constraint sets

{C3, . . . , Cn}
for fixed n > 3 are not Rado constraints. Goldstern and Kojman dealt
with the case of n even [4], while Komjáth dealt with n odd (presonal
communication).

Theorem 1 may be more conveniently phrased as follows.

Theorem 2. Let C be a finite set of cycles, i.e., C = {Cn |n ∈ I} ,
where I ⊆ N\{1, 2}} is finite.

If m ∈ I but rn− 2 /∈ I for some m ≥ 4, then there is no countable
universal C-free graph.

More broadly, we ask whether there is an effective criterion for a finite
set of forbidden finite subgraphs be a Rado constraint.1 A necessary
condition for this is joint embedding: any two C-free graphs must embed
in a third. This will hold whenever the constraints in C are connected,
via disjoint unions, and in some other cases. A more natural formulation
allowing for the failure of joint embedding is to ask for finite complexity
in the sense of [?], which is equivalent to the universality problem when
the class involved has joint embedding. In this direction, our paper [2]
used a model theoretic argument to prove the finite complexity of the
class of graphs omitting a specified finite family of disjoint unions of
complete graphs, answering a question of [?].
The term “effective criterion” may mean many things. It is an open

question whether the problem is decidable at all; on the other hand it
is possible that there is a completely explicit classification of the Rado
constraints (which tend to be exceptional, as we see here).

The point of the present paper is that for classes of graphs determined
by specifying finitely many forbidden cycles, the only positive results
of this kind are the ones covered by a theorem of [6].

There is another result of this kind which calls for a similar sys-
tematic analysis. In [6] it is shown that classes of graphs determined
by specifying a forbidden (finite) path size have universal elements.2

1Forbidding infinite graphs is quite interesting but tends to lead toward set
theoretic considerations.

2In fact, any finite class of finite connected forbidden graphs which contains some
path will also be a Rado constraint.
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The natural generalization of this would be to consider forbidden finite
trees, or more generally finite sets of finite trees. Very little is known
about this case, though one suspects that there are relatively few cases,
apart from the case of forbidden paths.3

As far as the present work is concerned, the main point is that the
method of [I] can be applied to close the gap between [I] and [6]. The
issues that arise in adapting the method used for one cycle to a set of
finitely many cycles are as follows: first, the formulation of Theorem 2
allows us to concentrate primarily on one cycle size; second, the simple
construction used in Lemma 3.5, which varies slightly from the one
given in [I], avoids any interference from the other cycle sizes. The rest
of the argument requires some additional attention to the other cycles,
but it turns out that the main lemma of [?] applies to this more general
situation without modification.

2. Preliminaries

A (simple, loopless) graph G = (V,E) is a structure consisting of a
set V of vertices and an irreflexive and symmetric binary relation E on
V . All graphs in this paper will be assumed to be countable without
further mention.

An embedding from a graph G1 = (V1, El) into a graph G2 = (V2, E2)
is an isomorphism f with a subgraph: that is, f : VI ↪→ V2 and for
all x, y ∈ Vl, if E1(x, y) holds then E2(f(x), f(y)) also holds.. If the
converse also applies, so that f is an isomorphism with an induced
subgraph, we say that f is a strong embedding.

Definition 2.1. For graphs G, H, we say that G weakly omits H if H
cannot be strongly embedded into G . We say that G strongly omits H
if H cannot be embedded into G (as a subgraph). We also say in this
case that the graph G is H-free (we do not say strongly in this case,
because we do not use any similar terminology in the weak case).

For a finite set C of graphs, we say that G weakly or strongly omits
C if G weakly or strongly omits all graphs in C. In the strong case, we
may also say that G is C-free.

We come now to universality.

3This problem was eventually settled in the case of one tree in Universal graphs
with a forbidden subtree, G. Cherlin and S. Shelah, J. Comb. Theory, Series B, 97
(2007), 293-333. There are in fact few Rado trees other than paths, and the main
work comes in proving the negative results.
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Definition 2.2. We say that a graph G is weakly or strongly universal
for a class R of graphs if each graph in the class R weakIy or strongly
embeds into G.

Both the strong and the weak notions of universality are of interest,
and are distinct. For the class of graphs, a complete graph is weakly
universal but the existence of a strongly universal graph requires more
attention. Whenever possible we prefer to prove results in whichever
form is strongest: that is, for existence we prefer to find strongly univer-
sal graphs, and for non-existence we prefer to rule out weakly universal
graphs, which may take some additional attention.

In the case at hand, the positie results have already been proved in
the context of strong universality, so our objective now will be to prove
Theorem 2 in its sharp form: namely, under the stated conditions, there
is no weakly universal C-free graph.
The standard approach to such problems is to construct an uncount-

able family of pairwise incompatible C-free graphs. The appropriate
notion of incompatibility is that no two of the graphs embed weakly
into a larger C-free graph. One can vary the construction a little, taking
e.g. graphs with a distinguished basepoint rather than graphs, which
leads to the same conclusion. We will give the concluding argument in
detail just below.

3. The proof

We fix the notation associated with Theorem 2. Let C be a finite set
of cycles and Cm ∈ C, Cm−2 /∈ C for some m ≥ 4.

Definition 3.1. If G is a C-free graph and S ⊆ X ⊆ V (G), we will
call the pair (S,X) C-rigid relative to G if the following holds.

For any two embeddings f, g : G ↪→ H of G into a C-free
graph H such that f and g agree on S, f and g must
agree on X.

The purely formal part of the argument is the following.

Lemma 3.2. Suppose that G is a C-free graph containing a C-rigid
pair (S,X). Suppose that there is an uncountable family of graphs Xi,
with the following properties.

(1) The induced graph on X is a subgraph of Xi.
(2) G ∪Xi is C-free.
(3) There is no C-free graph containing Xi ∪Xj as a subgraph, for

distinct i, j. (Note here that X is a subgraph of both.)

Then there is no weakly universal C-free graph.
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Proof. IfG is weakly universal—and countable, as we suppose throughout—
then we have embeddings of all Gi into G, and as S is finite there must
be two indices i, j for which the embedding of S is the same. By the
C-rigidity the embeddings agree on X and so G contains a copy of
Xi ∪Xj. But by hypothesis this cannot occur. □

The following lemma contains the key step in our argument.

Lemma 3.3. There exists an infinite countable C-free graph G with
bounded vertex degrees and a C-rigid pair (S,X) of vertices in G with
S finite and X infinite.

We will first show how to derive Theorem 2 from this lemma, and
then give the proof of the lemma.

Proof of Theorem 2. Suppose Cn is the cycle in C of maximum length.
Let G be as in Lemma 3.3.

Since the vertex degrees of G are bounded, we can choose an infinite
sequence of vertices

x0, xl, · · · ∈ X

such that the distance in G between any two distinct vertices in this
sequence is at least n.

For every string ϵ = (ϵ0, ϵ1, . . . ) of zeros and ones, extend G to a
graph G(ϵ) as follows: join the pair of vertices x2i and x2i+1 by an edge
if ϵi = 0, and by a path of length n− 1 if ϵi = 1. In the latter case the
path will contain n− 2 new vertices of degree 2.

It will be convenieent to write G(ϵ) = G ∪ X(ϵ) where X(ϵ) is the
extension made of X. To conclude, we will apply Lemma 3.2 to the
family of all such graphs G(ϵ)

Claim 1. The graphs G(ϵ) are C-free.
As the vertices x2i, x2i+1 are at distance at least n in G, and the same

applies to two such pairs of vertices, there is no new cycle of length at
most n in the extension of G by the new edges joining some of these
pairs. Since the added paths have length n − 1 and they are adjoined
to pairs of vertices that are not edges of G(ϵ), thre is no such new cycle
in G(ϵ). Thus G(ϵ) remains C-free.
Claim 2. There is no C-free graph containing X(ϵ)∪X(ϵ′) for distinct
ϵ, ϵ′.

We consider an index i for which ϵi ̸= ϵ′i. Then x2i and x2i+1 are
joined by an edge and by a path of length n−1 in the union of the two
graphs, and hence by a cycle of length n.

Thus Lemma 3.2 applies. □
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Thus it suffices to prove Lemma 3.3.
We introduce an auxilary graph Tm.

Notation 3.4. Let Tm be a graph with three distinguished vertices a,
b, c, with c adjacent to a and to b, and with c also joined to a and
b by paths Pa, Pb of length m − 3, disjoint apart from the specified
intersections. Thus Tm is the union of two cycles of length m− 2, with
intersection c, and with a, b adjacent to c on the corresponding cycle.
However, for m = 4, this reduces to a path acb.

Lemma 3.5. (a, b, c) is a C-rigid pair in Tm.

Proof. Suppose that H is a graph containing images of Tm under two
maps agreeing on a, b, but not on c. That is, H contains vertices a, b,
c′, c” with c′, c′′ adjaent to a, b, distinct, and having the paths of length
m − 3 connecting c′ or c′′ to each of a and b. We will find an m-cycle
and conclude that H is not C-free.

Though the argument is general, as the case m = 4 is somewhat
degenerate we may notice in this case that (a, c′, b, c) is already a 4-
cycle, and set this aside.

For the general argument we consider the paths Pa, Pb of lengthm−3
linking c′ to a and b which are inherited from Tm, and which meet in
c′. Now c′′ cannot lie on both paths, so we may suppose it does not lie
on Pa. Now Pa together with the path ac′′bc′ gives a cycle of length m,
as required. □

To prove Lemma 3.3 we will glue together several copies of Tm in the
manner described in [I]. At each stage of the construction we take two
vertices which are sufficiently far in the path metric, and treat them
as a, b in a new copy of Tm, thereby adding another vertex to our rigid
set. We need to show that this construction can be iterated infinitely
often without running out of suitable pairs a, b.
Again, let n be the maximum length of a cycle in C. We let N =

(14”− 1)/13 and quote the following from [I].

Fact 3.6. If G is a graph with all vertex degrees at most 12, and X is
a set of 4N +1 vertices in G, then there is a cycle H of length 4N +1
on the set X such that E(G) ∩ E(H) = ∅, and in G ∪ H there is no
cycle Ck with k ≤ n which contains an edge of H.

For our present purposes, the numbers N , 12 and (below) 6 could by
more appropriately replaced by (10n − 1)/9, 8, and 4, but we prefer to
quote the fact as previously given and apply it in that form.

The proof of Fact 3.6 is a slight variation of a well known argument
of G. Dirac relating to Hamiltonian cycles.
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Proof of Lemma 3.3. We construct a sequence of C-free graphs (Gs | s ∈
ω) together with a distinguished set Xs of 4N + 1 vertices in each Gs

with the following properties.

(1) Gs is an induced subgraph of Gt for s ≤ t.
(2) The vertex degrees in Gs are all at most 12.
(3) The vertex degrees in Gs for vertices in Xs are all at most 6.
(4) The pair (Xs−l, Xs) is C-rigid in Gs for s ≥ 1.
(5) There is a cycle Hs on the set of vertices Xs , such that E(G)∩

E(H) = ∅, and Gs ∪ Hs contains no cycles of length k ≤ n
which contain an edge of H.

The construction is inductive. Let G0 be a graph with 4N+1 vertices
and no edge, and X0 = V (G0). If Gs, Xs, and Hs satisfy conditions
(1)-(5), enumerate the vertices of Hs as (x

s
i | i ∈ Z/(4N +1)Z) in cyclic

order, and for each i ∈ Z/(4N + l)Z, adjoin a copy T i,s
m of Tm to Gs,

identifying the vertices a, b with xs
i , x

s
i+1 respectively. Let csi be the

vertex corresponding to c in T i,s
m . Let Gs+1 be the resulting graph

Gs ∪
⋃

T i,s
m | i ∈ Z/(4N + 1)Z,

with no further identifications. Let Xs+1 = {csi | i ∈ Z/(4N + l)Z}
P.roperties (1)-(4) of Gs+1 and Xs+1 are clear, and Fact 3.6 allows

us to choose a cycle Hs+1 satisfying condition (5). We must check that
Gs+1 is C-free.

Suppose that C is a cycle of length t in Gs+1, where t ∈ I . So t ≤ n.
As Gs is C-free, C does not lie wholly in Gs. Thus if we replace all
the edges of C which occur in some T i,s

m by the corresponding edges
in the cycle Hs, the result is a contraction C ′ of C lying in Gs ∪ H,
and containing an edge of Hs. Note that C ′ is a cycle with length not
larger than t , so not larger than n (or perhaps a doubled edge). But
this contradicts the induction hypothesis.

Thus the induction proceeds.
Now to conclude let G =

⋃
s∈ω Gs, S = X0, X =

⋃
s∈ω Xs. Then G is

C-free and as (Xs, Xs+l) is C-rigid in G for all s, it follows that (Xo,Xs)
is C-rigid in Gs and thus (S,X) is C-rigid in Gs, as desired. □
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