
THERE IS NO UNIVERSAL COUNTABLE
PENTAGON-FREE GRAPH

G. CHERLIN AND P. KOMJÁTH

Abstract. For n ≥ 4, no countable Cn-free graph contains every
countable Cn-free graph as a subgraph, for n ≥ 4. This was proved
for n = 4 by J. Pach.

1. introduction

It was R. Rado [Rad] who first remarked that among the countable
graphs there exists a universal one: a countable graph which isomorphi-
cally embeds (as induced subgraphs) all countable graphs. On the other
hand N. G. de Bruijn noticed that if we consider only those countable
graphs in which all vertex degrees are finite, then there is no universal
one, even in the weaker sense where we allow embeddings which are
not necessarily embeddings as induced subgraphs (cf. [Rad]).

There has been some interest in the following more general problem:
given a finite or countably infinite graph G, determine whether there
is a universal, G-free, countable graph. It is easy to see that there is
such a graph in the case G = Kn is a complete graph, for any finite
n. J. Pach showed that there is no universal G-free graph if G = C4,
the circuit of length 4 [HP], and in [KP84] the case in which G is a
complete bipartite graph was settled. It is proved in [KMP] that there
is a universal countable graph if all odd circuits up to a certain length
are to be excluded.

One of the simplest cases of the problem which has not been resolved
previously is the question of the existence of a universal countable
pentagon-free graph. We will show here that if G is any circuit of length
at least 4, then there is no universal countable G-free graph.

It would not be unreasonable to ask for a characterization of all the
finite graphs G for which universal G-free graphs exist, or at least an
algorithm which settles every instance of the problem. A case which
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seems even more basic than the case we treat here would be the char-
acterization of the finite trees G for which a universal countable G-free
graph exists.

We are grateful to an alert referee who saw that an earlier and slightly
simpler version of the argument fails for cycle lengths greater than 5.

Definition 1.1.
1. A graph is a pair G = (V ;E) where the set V of vertices is

arbitrary, and the set E of edges consists of unordered pairs from V ;
thus loops and multiple edges are excluded.

2. An embedding f : G1 −→ G2 between two graphs G1 = (V1;E1)
and G2 = (V2;E2) is any injection V1 → V2 such that {x, y} ∈ E1

implies {f(x), f(y)} ∈ E2; if the converse also holds for all x, y ∈ V1,
we call f a strong embedding.

3. For G,H graphs, we say that H is G-free if G does not embed into
H (as a subgraph).

4. The length of a path or a circuit is the number of edges occurring
in it.

Our proof will depend on the following lemma, a variation on a well-
known result of G. Dirac on Hamiltonian circuits [Dir]. The proof of
the lemma will be given at the end.

Lemma 1.2. If G is a graph with all vertex degrees at most 12, and X
is a set of 4N + 1 vertices, then there is a circuit H of length 4N + 1
on the set X such that in G∪H there is no circuit of length at most n
which contains an edge of H, and G and H have no edge in common.

Theorem 1. If n ≥ 4 there is no universal, countable, Cn-free graph.

The case n = 4 was already settled by J. Pach [HP]. Our argument
uses a similar method.

Proof. Fix n ≥ 4. If G = (V ;E) is a Cn-free graph, and S,X ⊆ V , we
will call the pair (S,X) Cn-rigid if the following holds.

For any Cn-free graph H = (W ;F ), if f, g : G −→ H are
two embeddings which agree on S, then they agree on X.

Below we will construct a Cn-free graph G of bounded vertex degree
and a Cn-rigid pair (S,X) with S finite and X infinite. We first argue
that this is sufficient.

We can select an infinite sequence of vertices x0, x1, . . . ∈ X such
that d(xi, xj) ≥ n for i ̸= j, since the vertex degrees in G are bounded.
For every string ϵ = ϵ0ϵ1 . . . of zeros and ones, we define a graph G(ϵ)
extending G as follows: the vertices x2i, x2i+1 will be joined by an edge
if ϵi = 0, and by a path of length n − 1 if ϵi = 1 (in particular each
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such path will contain n− 2 new vertices, of degree 2). Clearly G(ϵ) is
Cn-free. We will show that no countable Cn-free graph H embeds all
of the graphs G(ϵ).

If H is a countable graph embedding all of the graphs G(ϵ), then as S
is finite, there are two different strings ϵ, ϵ′ such that the embeddings of
G(ϵ), G(ϵ′) agree on S. If H is Cn-free as well, then the two embeddings
agree on X. In particular we can denote the image of xi under either
of these embeddings by xi again. If ϵi ̸= ϵ′i, then x2i, x2i+1 are joined by
both a path of length n− 1 and an edge in H; so Cn ≤ H, as claimed.

It remains to construct the desired initial graph G. Let Tn be a graph
with three distinguished vertices a, b, c, with c adjacent to a and b, and
with c joined to a by two paths of length ⌊n/2⌋−1, and to b by two paths
of length ⌊(n−1)/2⌋. When n is 4 or 5, modify this rule by omitting all
“paths” of length 1. The additional paths are of course taken disjoint
except at their extremities. The graph Tn is clearly Cn-free.

We claim:

(∗) ({a, b}, {c}) is a Cn-rigid pair in Tn.

In other words, ifH is a Cn-free graph containing vertices a, b, c′, c′′ such
that a, b, c′ and a, b, c′′ are the images of a, b, c under two embeddings
f, g of Tn into H, we claim that c′ = c′′. If c′ ̸= c′′, let U1 and U2 be
paths of length [n/2]−1 and [(n−1)/2] joining c′ to a and b respectively
in H, coming from the embedding f of Tn into H, and chosen so that
c′′ does not lie on U1 or U2. Then U1∪U2 is a path of length n−2 from
a to b, and together with c′′ this creates a circuit of length n in H, a
contradiction. This proves (*).

Now our construction proceeds as follows. Let N = (14n − 1)/13.
We will construct a strongly increasing sequence of Cn-free graphs Gs

(that is, Gs is an induced subgraph of Gt for s ≤ t), together with a
distinguished set Xs of 4N + 1 vertices in Gs, so that:

(1) The vertex degrees in Gs are all at most 12.

(2) The vertex degrees in Gs for vertices in Xs are at most 6.

(3) The pair (Xs−1, Xs) is Cn-rigid in Gs for s ≥ 1.

(4) There is a circuit Hs on the set of vertices Xs such that:

Gs ∪Hs contains no circuit of length at most n, and

Gs, Hs have no edges in common
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Assuming this construction has been carried out, we then set

G =
⋃
s

Gs, S = X0, X =
⋃
s

Xs.

So it now suffices to construct suitable Gs and Xs for all s. We will rely
here on Lemma 1.2.

Initially, X0 is a set of 4N + 1 vertices, and G0 has X0 as its vertex
set, with no edges.

For the inductive step, suppose that Gs and Xs have been con-
structed satisfying conditions (1-4). Enumerate the vertices of Xs in
cyclic order as (xs

i : i ∈ Z/(4N + 1)Z). For each i ∈ Z/(4N + 1)Z,
adjoin (freely) a copy T i,s

n of Tn to Gs, identifying the vertices a, b with
xs
i , x

s
i+1 respectively. Let Gs+1 be the resulting graph, and let ci,s denote

the vertex of Gs+1 corresponding to c in T i,s
n . We will take Xs+1 to be

{ci,s | i ∈ Z/(4N + 1)Z}.

It is clear that Gs+1, Xs+1 then have properties (1-3). Furthermore
our lemma shows that condition (4) can be met on the basis of condition
(1). The only other point that needs to be checked is that Gs+1 is again
Cn-free.

Suppose that C is a circuit of length n in Gs+1. As Gs is Cn-free,
C does not lie wholly in Gs. Therefore if we replace all the edges of C
which occur in some T i,s

n by the corresponding edge in the circuit Hs,
the result is a contraction C ′ of C lying in Gs ∪ Hs, and containing
an edge of Hs. C

′ is a circuit (or perhaps a doubled edge). By our
inductive hypothesis, Gs ∪ Hs contains no circuit of length at most
n, and no repeated edge. Thus Gs+1 is Cn-free. This completes the
construction. □

We turn to the proof of Lemma 1.2, which is modeled on the proof of
a theorem of Dirac on hamiltonian circuits [Dir]. To see the connection,

associate to the pair G,X of the lemma an auxiliary graph X̂ on the
vertex set X, in which two vertices are linked by an edge just in case
their distance in G is at least n. Then the circuit provided by the lemma
is, in particular, a hamiltonian circuit in this graph.

Proof of Lemma 1.2. We observe at the outset that in any graph whose
vertex degrees are bounded by 14, there can be at most N vertices lying
at distance at most n− 1 from any fixed vertex.
For the purposes of the present argument, any path or circuit lying

in the complete graph on X will be called a path or circuit in X. By
an abuse of notation, we will identify a circuit with a cyclic ordering of
its vertex set. A circuit will be called “short” if has length at most n.
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A path or circuit H in X will be admissible if G∪H contains no short
circuit with an edge in H, and G and H have no edges in common.

We must build an admissible circuit with vertex set X. We begin by
building an admissible path H1 = (x1, . . . , x3N+1) of length 3N . For
this we simply select the vertices xi successively: if H = (x1, . . . , xi)
with i < 3N + 1 is admissible, we can choose xi+1 ∈ X − V (H) lying
at distance at least n from xi in G ∪H.

Similarly, after H1 is constructed we can find an index i in the range
[2N + 1, 3N + 1] such that the distance from x1 to xi in G ∪H1 is at
least n. Then the circuit H2 = (x1, . . . , xi, x1) is an admissible circuit
of length at least 2N + 1.

Now starting from an admissible circuit H in X of length at least
2N + 1, and any point x of X − V (H), we will argue that there is an
admissible circuit with vertex set V (H)∪{x}; this is then sufficient to
complete the argument. We use Dirac’s idea here. More than half of the
vertices of H lie at distance at least n from x in G∪H, so there are two
adjacent vertices y, z in H with this property. Form a new circuit H ′

by inserting x between y and z. One may then check that H ′ is again
admissible: for example, if a circuit in G∪H ′ contains both of the new
edges (y, x) and (x, z), then replacing these two edges by (x, z) we get
a shorter circuit lying in G ∪H. □
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