
ON HOMOGENEOUS NILPOTENT GROUPS AND
RINGS
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Abstract. We give a new framework for the construction of ho-
mogeneous nilpotent groups and rings. This goes a long way to-
ward unifying the two cases, and enables us to extend previous
constructions, producing a variety of new examples. In particular
we find ingredients for the manufacture of 2ℵ0 homogeneous nilpo-
tent groups “in nature.”

An algebraic structure is homogeneous1 if every isomorphism between
two of its finitely generated substructures is induced by an automor-
phism.

Solvable homogeneous groups have been classified up to the deter-
mination of the homogeneous nilpotent groups of class 2 and exponent
4 [3], but the latter exist in profusion: a family of 2ℵ0 countable homo-
geneous nilpotent groups of class 2 and exponent 4 was constructed in
[11]. The existence of many homogeneous nilpotent groups of exponent
four also places certain limitations on the possible extensions of the
finite Suzuki 2-group classification to the infinite setting.

Similarly, homogeneous rings have been classified up to the deter-
mination of the homogeneous rings which consist of the extension of a
nilpotent ideal by a multiplicative identity, which also exist in profusion
[1], even in the commutative case [12].

In the present paper we will introduce a formalism for carrying out
computations of the sort that occur in the constructions of the second
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and third authors, involving pairs of vector spaces linked by a qua-
dratic map. In both cases—nilpotent groups and commutative rings—
the technical difficulties are connected with the study of free amalgama-
tion in two rather special categories. We propose here to replace those
categories by two somewhat simpler categories, and to show that all
necessary computations can be carried out in those simpler categories.
We will then show what the earlier computations look like in our cat-
egories. Using this setup, we will generalize the earlier constructions
and give marginally sharper bounds in the cases studied previously.

The main point is that the categories in which we work contain less
information than the original categories, while retaining everything of
importance for the study of homogeneity. Another point is that the
two categories we introduce (one connected with groups, and the other
with rings) turn out to be two variations on a single theme: the case
of nilpotent groups corresponds to working over the finite field 2, while
the commutative rings are associated with the prime fields Fp for p > 2.
As we work with quadratic forms, it is natural that the case of charac-
teristic 2 should show some special features. By the results mentioned
above, constructions of such families of homogeneous structures are
impossible for nilpotent groups of odd exponent, or for commutative
rings of characteristic 2, so the realization of our simplified examples
by classical algebraic systems really does involve both groups and rings
essentially.

It may be well to review the general method used in [1, 11, 12]. This
method is due in general to Fräıssé, but was first applied to problems
of this type by Henson, in a more combinatorial setting.

We suppose we have a family F of algebraic structures closed under
isomorphism and substructure, which is uniformly locally finite, closed
under arbitrary directed unions, and has the amalgamation property:

For any structures A1, A2 in F with a common substruc-
ture A0, there is an amalgam A ∈ F of A1, A2 over
A0—this means there are embeddings of A1, A2 into A
that agree on A0.

Here we also allow the case A0 = ∅, formally; that is, we also require
any two structures in F to have a common extension in F . With mild
side conditions, this allows the construction of countable homogeneous
structure, the Fräıssé limit of the class F , and every countable homo-
geneous structure can be constructed as a Fräıssé limit.

There are many such classes F , and typically the required amalgam
is far from unique. For our present purposes it is necessary to assume
that some particular amalgamation procedure has been chosen. This
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notion will be called “free amalgamation,” and in practice it is often
determined by a universal property. It will be convenient to refer to
A1, A2 as the “factors” of their free amalgam. For our purposes what
matters is that one can carry out computations inside the free amalgam
in terms of the structure of the factors, in order to determine what new
substructures arise.

Given such a family F , with a suitable notion of free amalgamation,
we will call a structure A a-indecomposable (“amalgamation-indecom-
posable”) if whenever A is embedded into the free amalgam of two
structures over a third, the image of the embedding is contained in
one of the two factors. Two a-indecomposable structures will be called
comparable if there is an embedding of one into the other, and a family
of a-indecomposable structures is an antichain if no two of its members
are comparable.

Fräıssé’s construction, as applied by Henson, amounts to the follow-
ing: if there is an infinite antichain of finite, a-indecomposable struc-
tures in F , then there are 2ℵ0 countable homogeneous structures in
F . The question as to whether a large stock of examples can be cre-
ated by other means is very interesting, but unfortunately we know
nothing about this in the cases of interest here, so we will confine
ourselves entirely to the problem of constructing infinite antichains
of a-indecomposable finite structures. We now describe the two cases
treated in [11, 12], which involve well-behaved categories of algebraic
systems.
Let G be the category of groups of exponent four in which all involu-

tions are central, and let Rp be the category of commutative nilpotent
rings of characteristic p in which any element whose square is 0 anni-
hilates R. Observe that the groups in G are nilpotent of class two. and
the rings R in Rp satisfy R3 = (0).

In each of these categories there is a notion of free amalgamation,
characterized by a universal property, and in [11, 12] the necessary
antichain of a-indecomposable structures was produced in each of the
two cases (with p > 2).
We will associate auxiliary categories of “quadratic structures” with

these categories and show that our auxiliary categories are equivalent
to the original ones as far as the study of a-indecomposable objects and
embeddings is concerned. Working in our new categories of quadratic
structures we will also find additional antichains of a-indecomposable
objects “in nature.,” derived from quadratic forms over finite fields.
For example, it turns out that the Sylow 2-subgroups of the simple
groups PSU(3, q2) for q = 2ℓ, ℓ prime, form an infinite antichain of
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a-indecomposable groups of exponent four in which all involutions are
central.

In the case of groups, the category we use is related to one intro-
duced explicitly by Hughes in connection with the study of nilpotent
groups of class 2 [7]. However, the connection between our “linearized”
category and the corresponding category of groups is much closer than
the connection in [7] for two reasons:

(1) The class of groups considered is drastically restricted here.
(2) We retain more information by using a quadratic form instead of

the associated bilinear form (which in characteristic 2 contains
much less information).

The result is that we have a functorial correspondence which is 1-1 at
the level of isomorphism types of objects, though we lose (i.e., factor
out) some morphisms. In some respects our category is closer to the
one used by Gruenberg in [6, p. 185].

1. Quadratic structures in characteristic 2

If U , V are vector spaces over the field F2, we will say that a function
Q : U → V is quadratic if the function

γ(x, y) = Q(x) +Q(y) +Q(x+ y)

is an alternating bilinear map. We will say that Q is nondegenerate
if Q(x) ̸= 0 for x ̸= 0.2 Observe that a quadratic map Q is uniquely
determined by the function γ together with the values of Q on a basis,
and these data may be prescribed arbitrarily.

A quadratic structure is a structure (U, V ;Q) where U , V are vector
spaces over the field F2 and Q is a nondegenerate quadratic map from
U to V. If we drop the nondegeneracy condition we speak of a weak
quadratic structure. For the most part we impose the nondegeneracy
condition, but we give Lemmas 1.1 and 1.2 for the broader context.
See Lemma 1.1 for an indication as to why nondegeneracy will be a
fundamental requirement.

We let Q be the category of quadratic structures with morphisms

(f, g) : (U1, V ;Q1) → (U2, V2;Q2)

given by linear maps f : U1 → U2, g : V1 → V2 respecting the qua-
dratic structure: i.e., gQ1 = Q2f . G denotes the category of groups of
exponent four in which every involution is central.

2Perhaps a better term would be non-isotropic.
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If G is a group in G, set

V (G) = Ω1ZG U(G) = G/V (G),

and let QG : U(G) → V (G) be the map induced by squaring in G.
Then M(G) = (U(G), V (G);QG) is a quadratic structure. Further-
more, the associated map γ is the one induced by commutation from
G/V G×G/V G to V G. Note that the map from G toM(G) is actually
given by a functor F from G to Q. The main point is that the functor
F throws away very little information, as the next two lemmas show.

It is convenient to introduce a third category E whose objects are
central extensions

1 → V → G→ U → 1

with U , V elementary abelian 2-groups and with morphisms given by
morphisms of exact sequences (triples of group homomorphisms). The
functor M is the composition of a functor E : G → E , which takes a
group G in G to the associated short exact sequence

1 → V (G) → G→ U(G) → 1,

and a functor M∗ which takes the sequence

1 → V → G→ U → 1

to the weak quadratic structure (U, V ;Q) where Q : U → V is induced
by squaring in G. As the functor E takes G isomorphically onto a full
subcategory of E , we work initially with E andM∗. We begin by looking
at the effect of M∗ on objects.

Lemma 1.1. Let U , V be elementary abelian 2-groups. Then the fol-
lowing hold.

(1) M∗ induces a 1-1 correspondence between equivalence classes
of central extensions

1 → V → G→ U → 1

and isomorphism types of weak quadratic structures.
(2) G ∈ G if the corresponding weak quadratic structure is nonde-

generate.

Proof. The second point is clear, so we prove only (1).
We know the central extensions are classified by H2(U, V ) with U

acting trivially on V or, more concretely, by normalized 2-cocycles c :
U × U → V , with the cocycle identity

c(u1, u2) + c(u1, u2 + u3) + c(u1 + u2, u3) + c(u2, u3) = 0,
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and the normalization c(0, u) = c(u, 0) = 0, modulo coboundaries

δf(u1, u2) = f(u1 + u2) + f(u1) + f(u2)

where f : U → V is normalized by f(0) = 0. Here, since we are working
in characteristic 2, we suppress the usual minus signs.

If the extension 1 → V → G→ U → 1 is represented by the cocycle
c then Q(u) = c(u, u). Our first claim is that every quadratic map Q
comes from an extension. We will write down a cocycle c explicitly with
c(u, u) = Q(u). Fix an ordered basis (ui) for U and define

c

(∑
i

δiui,
∑
i

ϵiui

)
=
∑
i>j

δiϵjγ(ui, uj) +
∑
i

δiϵiQ(ui)

One checks that this is a cocycle directly, without using any spe-
cial properties of the functions Q and γ. One also checks easily that
c(u, u) = Q(u), and here the relationship of Q and γ enters in.

For the uniqueness statement, suppose c1, c2 are two cocycles cor-
responding to the same function Q, and consider their difference c =
c1 − c2. Then c satisfies c(u, u) ≡ 0, so the corresponding extension
has exponent 2 and therefore splits; so c1, c2 represent the same exten-
sion. □

We now consider the effect of M on morphisms (cf. [6, p. 187, The-
orem 1, and the remark following]).

Lemma 1.2. For i = 1, 2, let

1 → Vi → Gi → Ui → 1(Ei)

be central extensions with Ui, Vi elementary abelian 2-groups, and let
Mi = (Ui, Vi;Qi) be the associated weak quadratic structures. Then the
following hold.

(1) The map M∗ : Hom(E1, E2) → Hom(V1, V2) is surjective.
(2) Taking E1 = E2 = E, M = M∗(E), and writing U , V for Ui,

Vi, we have the short exact sequence

1 → Hom(U, V ) → AutE → AutV → 1.

Proof.

Ad 1
Let (f, g) ∈ Hom(M1,M2). Then f : U1 → U2 and g : V1 → V2, and

there are induced maps on cohomology:

f ∗ : H2(U2, V2) → H2(U1, V2);

g∗ : H
2(U1, V1) → H2(U2, V2).
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At the level of cocycles these maps are induced by composition with
f or g. Hence the same applies at the level of the quadratic maps Q
(since Q(u) = c(u, u) when Q corresponds to c).

The extensions E1 and E2 are represented by cohomology classes a1
and a2 in H2(U1, V1) and H

2(U2, V2) respectively, and thus f ∗(a2) and
g∗(a1) belong to H2(U1, V2).

Now a pair of maps f : U1 → U2, g : V1 → V2 extends to a morphism
from E1 to E2 if and only if f ∗(a2) = g∗(a1) [13, p. 202]. In terms of
the associated quadratic maps this means Q2 ◦ f = g ◦ Q1, which is
exactly what we have assumed.

Ad 2
The surjectivity was proved in part (1). The rest is obvious. □

Now we consider the amalgamation process inQ. LetM0 ↪→ M1,M2

be a diagram with embeddings in Q. Let Mi = (Ui, Vi;Qi). Let U∗,
V ∗ be the amalgamated direct sums U1 ⊕U0 U2 and V1 ⊕V0 V2 in the
category of vector spaces.

Let M be (U, V ;Q) with U = U∗, V = V ∗ ⊕(U1/U0) ⊗ (U2/U0),
and with Q : U → V defined by first choosing splittings of U1, U2 as
U ⊕U ′

1 and U0⊕U ′
2, respectively, identifying U

′
1, U

′
2 with U1/U0, U2/U0

and let Q(u0 + u′ + u′) be

Q0(u0) +Q1(u1) +Q2(u
′) + γ1(u0, u

′
1) + γ2(u0, u

′
2) + u′1 ⊗ u′2

Equivalently, Q↾Ui = Qi and γ(u1, u2) = u1 ⊗ u2.
Then Q is easily seen to be a quadratic map, and since u′1 ⊗ u′2 = 0

only when one of the factors is zero, the nondegeneracy is also imme-
diate. There are natural maps M1,M2 → M agreeing on M0, and

we claim that M is a pushout, so let fi : Mi → M̂ be maps agreeing

on M0 for i = 1, 2, where M̂ = (Û , V̂ ; Q̂). There are natural maps

f : U → Û , g0 : V ∗ → V̂ induced by Ui → U , Vi → V . Further-
more relative to the identifications Ui/U0 ≃ U ′

i and the embeddings
of U ′

i in U there is a map γ̂ : U ′
1 × U2 → V inducing a linear map

g1 : U1/U0 ⊗ U2/U0 → V . Let g = g0 + g1.
We claim that (f, g) is a morphism, that is, that it preserves Q. On

M1, M2 this is certainly the case, so our claim reduces to

g(γ(u′1, u
′
2)) = γ̂(fu′1, fu

′
2),

which is true by construction since g(γ(u′1, u
′
2)) is just g1(u

′
1 ⊗ u′2).

We call the quadratic structure M constructed above the free amal-
gam of M1 and M2 over M0. The following is a reformulation of a
result in [10].
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Lemma 1.3. Let G0 → G1, G2 be an amalgamation diagram in G,
associated to the diagram M0 → M1,M2 in Q. Let M be the free
amalgam of M1, M2 over M0, and let G be the group associated with
M in Q.
Then there are embeddings G1, G2 → G with respect to which G

becomes the free amalgam of G1, G2 over G0 in Q.

Proof. This is not quite contained in Lemma 1.2.
The embeddings M0 → M1,M2 → M give rise to embeddings

ιi : Gi → G for i = 1, 2, and ι1, ι2 induce the same embedding of M0

into M. Hence they have the same image in G and ι−1
2 ι1 is an auto-

morphism of G0 which is trivial on M0, hence induced by an element
ϕ of Hom(U0, V0). We can extend ϕ to an element of Hom(U, V ); let
α be the corresponding automorphism of G. Then if we replace ι2 by
ι2α, ι1 and ι2 will agree on G0 and still induce the given embeddings
Mi → M.
Thus at least G serves as a possible amalgam of G1, G2 over G0. If

ϵi : Gi → H is another possible amalgam, we have a map (f, g) : M →
M(H) commuting with the given embeddings. This map is induced by
some homomorphism h : G → H. The maps h ◦ ιi agree with the ϵi
up to automorphisms of Gi trivial on Mi, induced by homomorphisms
ϕi : Ui → Vi. On U0 the maps ϕi coincide with a map ϕ0 : U0 → V0, so
they define a map

ϕ : U = U1 ⊕U0 U2 → V1 ⊕V0 V2 ⊆ V.

If we correct the map h by the automorphism corresponding to ϕ, we
get a map from G to H whose composition with each ιi equals the
given ϵi. □

Lemma 1.4. A group G ∈ G is a-indecomposable iff the associated
quadratic structure M is a-indecomposable in Q.

Proof. An embedding into a free amalgam in either category can be
transferred to a similar embedding in the other category; and the loca-
tion of the image in one category controls the location of the image in
the other category. □

2. Quadratic structures in odd characteristic

In setting up a category Qp which controls Rp in the same way that
Q controls G we will see that very little changes, and the situation
becomes somewhat simpler.
In odd characteristic p we will take our quadratic structures to be

of the form (U, V ; γ) where U , V are vector spaces over the prime field
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Fp and γ : U × U → V is a symmetric bilinear map, and we impose
the strong nondegeneracy condition γ(u, u) ̸= 0 for u ̸= 0, as before.
We could also work with Q(u) = 1

2
γ(u, u) to keep the notation closer

to that used in the previous case.
This gives rise to a category Qp of quadratic structures in character-

istic p, with morphisms given by pairs of linear maps (f, g) respecting
γ. If we allow p = 2 then Q2 and Q are very different categories. In
Q2, the map γ(u, u) is linear, and then the nondegeneracy condition
becomes very restrictive. This is not a useful category for our purposes.

Recall that the category Rp consists of commutative nilpotent rings
R of characteristic p in which every element x with x2 = 0 annihilates
R, and that such rings satisfy the condition R3 = (0).

Given a ring R ∈ Rp, let V = AnnR and U = R/V . Let γ : U×U →
V be induced by multiplication. Then (U, V ; γ) is a quadratic structure
over Fp, and this correspondence extends to a functor from Rp to Qp.

As before, we can factor M through the category Ep of extensions

0 → V → R → U → 0

in which R is an Fp-algebra, R
2 ⊆ V , RV = V R = (0). We write M∗

for the corresponding functor from Ep to Qp.
We no not need to impose either a nondegeneracy or commutativity

condition on these extensions. Accordingly, we will take as the class of
weak quadratic structures all structures (U, V ; γ) with γ : U × U → V
bilinear. An Fp-algebra extension of this type will be called a singular
extension [9, Chapter X, §3]). With U , V fixed, these singular exten-
sions are classified by Hochschild cohomology H2(U, V ), but of such a
degenerate type that there is little to be gained from this point of view.

Lemma 2.1. Let U , V be elementary abelian p-groups, and view U as
an Fp-algebra with trivial multiplication, and V as a trivial U-module.
Then:

(1) M∗ induces a 1-1 correspondence between equivalence classes
of singular extensions

0 → V → R → U → 0

and isomorphism types of weak quadratic structures.
(2) R ∈ Rp if the corresponding weak quadratic structure M(R) is

a quadratic structure, i.e., γ is symmetric and nondegenerate.

Proof.

Ad 1
This is all immediate, unlike Lemma 1.1.
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Given a weak quadratic structure (U, V ; γ) let R = U ⊕ V with
UV = V U = (0) and with multiplication on U defined by γ. Since
all extensions under consideration split as abelian groups, and RV =
V R = (0), the uniqueness is also clear.

Ad 2
As before, this is clear. □

Lemma 2.2. Let

0 → Vi → Ri → Ui → 0(Ei)

be singular extensions with Ui, Vi elementary abelian p-groups carrying
trivial ring and module structures, respectively, and let Ai = (Ui, Vi;Qi)
be the associated weak quadratic structures. Then the following hold.

(1) The map M∗ : Hom(E1, E2) → Hom(Al,A2) is surjective.
(2) Taking E1 = E2 = E and A = M∗(E), and writing U , V for

Ui, Vi, there is the short exact sequence

1 → Hom(U, V ) → Aut(E) → Aut(V ) → W → 1.

Proof. In view of the very simple structure of the rings Ri, this is
clear. □

The next step is to describe the operation of free amalgamation
in Qp, which is nearly identical to the construction in Q. We take
γ↾ (Ui × Ui) = γi, and we take γ↾ (U ′

1×U ′
2) to be essentially the canon-

ical map into the tensor product (after identifying U ′
i with Ui/U0).

Then we can return at once to the category Rp.

Lemma 2.3. Let R0 → R1, R2 be an amalgamation diagram in Rp,
associated to the diagram M0 → M1,M2 in Qp. Let M be the free
amalgam of M1, M2 over Mo, and let R be the ring associated with
M in Rp. Then there are embeddings R1, R2 → R with respect to which
R becomes the free amalgam of R1, R2 over R0 in Fp.

Finally, as in the case of groups we can read off the following.

Lemma 2.4. A ring R ∈ Mp is a-indecomposable iff the associated
quadratic structure M is a-indecomposable in Qp.

3. Some antichains in Q and P

At this point we have an exact correspondence between the a-indecom-
posable objects in the two categories G and Q, and a similar correspon-
dence for the two categories Rp and Qp, and this correspondence pre-
serves the relation of embeddability. Hence the study of antichains of



ON HOMOGENEOUS NILPOTENT GROUPS AND RINGS 11

a-indecomposable objects in G orRp can now be transferred completely
to Q or Qp.

For the remainder of the paper we work in Q and Qp. We recall
that each infinite antichain in Q produces 2ℵ0 homogeneous nilpotent
countable groups (in G) and that each infinite antichain in Qp produces
2ℵ0 homogeneous nilpotent countable rings, by the Fräıssé technology.

In the present section we give some examples of antichains occur-
ring naturally in Q and in Qp, associated with anisotropic quadratic
forms. In succeeding sections we will combine these examples with the
constructions of [11, 12] to get a very rich collection of antichains.

Fix a prime p throughout. For any d > 1 let Fd, F2d be the finite

fields of orders pd, p2d respectively. Let F (p)
d = (Fd, F2d;N) where N :

F2d → Fd is the norm from F2d to Fd. These will be our examples.
(When the superscript p is understood we will often omit it.)

If σ generates the Galois group of F2d over Fd, then the associated
bilinear map γ is Tr(xyσ) with Tr the trace.

These structures are in Q for p = 2, and in Qp for p > 2. F (2)
d

corresponds to the Sylow 2-subgroup of PSU(3, (2d)2), which for d = 1
is the quaternion group, and for d = 2 is another homogeneous finite
group. In our discussion of a-indecomposability we will treat the cases
p = 2, p > 2 separately.

Remark 3.1. Suppose p = 2. Let M = (U, V ;Q) be the free amalgam
of two quadratic structures M1, M2 over a common substructure M0.
Suppose that u, ũ ∈ U satisfy the following.

(1) At least one of u, ũ lies outside U1∪U2, and both lie outside U0.
(2) Either Q(u) = Q(ũ), or γ(u, ũ) = 0.

Then we may conclude that ũ ∈ u+ U0.

Lemma 3.2. The structure F (2)
d is a-indecomposable.

Proof. In Fd we have the following property: for any two elements u, û
of F2d, there is an element ũ such that

γ(u, ũ) = 0 and N(ũ) = N(û).(*)

Suppose that (f, g) : F (2)
d ↪→ M embeds F (2)

d into the free amalgam
of M1, M2 over M0. Let u, û be two elements of F2d, and suppose
that f(u), f(û) lie outside U1, U2.
Choosing ũ as in (*), as N(ũ) = N(û) we find f(ũ) also lies outside

of U1, U2, and hence two applications of our foregoing remark give
f(u) ∈ f(û) + U0. In other words, there is an element a ∈ U so that
f [F2d] is contained in U1 ∪ U2 ∪ (a+ U0).
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If f [F2d] is contained in U1 ∪ U2, then as this image is closed under
addition, it is contained in one (or both) of the factors. If on the other
hand f [F2d] contains an element a not in U1 ∪ U2, then it follows that
f [F2d] = A0 + (a) for some A0 ≤ U0. Hence on the image of f , γ takes
values in V1⊕V0 V2, so that Q(a) does not lie in the image of γ, since it

has a nontrivial component in U1/U0⊕U2/U0. However, in F (2)
d , γ(1, x)

is the trace of x, and the trace is surjective. □

We turn to the proof of a-indecomposability in odd characteristic.
In order to formulate a suitable version of our initial remark we need
some additional notation. If M = (U, V ; γ) is the free amalgam of two
quadratic structures M1, M2 in Qp over a common substructure M0,
and u ∈ U , we define u∗ ∈ U/U0 as follows. U/U0 may be identified
with U1/U0DU2/U0. For u ∈ U , let ū be the corresponding element
of U/U0, identified with the pair (ū1, ū2) in the direct sum, and set
u∗ = (ū1,−ū2).

Remark 3.3. Fix p > 2. Let M = (U, V ; γ) be the free amalgam of
two quadratic structures M1, M2 over a common substructure M0 in
Qp. Suppose that u, ũ ∈ U satisfy the following conditions.

(1) At least one of u, ũ lies outside U1∪U2, and both lie outside U0.
(2) γ(u, ũ) = 0.

Then ¯̃u ∈ Fpu
∗.

Lemma 3.4. For p > 2 the structure F (p)
d is a-indecomposable.

Proof. Suppose that

ι = (f, g) : F (p)
d ↪→ M

embeds F (p)
d into the free amalgam M of M1, M2 over M0. Let L =

{a ∈ F2d | aσ = −a}, where σ generates the Galois group of F2d over
Fd.

Case 1. Suppose that for some u ∈ F2d, we have f(u) ∈ U1\U0.

For a ∈ L, we have f(au) ∈ U1.(1)

This follows because γ(u, au) = 0.

For a ∈ L, we have f(a2u) ∈ U1.(2)

If f(au) /∈ U0 then this follows from (1). If f(au) ∈ U0 then f((a +
1)u) ∈ U1\U0 and by (1) we have f(a(a + 1)u) ∈ U1, which with (1)
yields (2).
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Now let K be

{a ∈ F2d | f(au) ∈ U1}.

It follows from (2) that K contains the elements of Fd which are not
squares in Fd, and as any element of Fd is a sum of two such elements,
K contains Fd. At the same time K contains L and Fd ⊕ L = F2d, so
K = F2d, as desired. Of course we may deal similarly with the case in
which the image of f meets U2\U0.

Case 2. For any u ∈ F2d, if f(u) ∈ U1 ∪ U2, then f(u) ∈ U0, and there
is some such u ∈ F×

2d.
Set

I = {u ∈ F2d | f(u) ∈ U0};
R = {a ∈ F2d | aI ≤ I}.

Then R is a subring of F2d, and hence a subfield.
If a ∈ F2d and N(a) = 1 we will show a ∈ R. Let u ∈ F2d with

f(u) ∈ U0. Then N(au) = N(u) and Q(f(au)) = Q(f(u)) ∈ V0, so
f(au) ∈ U1 ∪ U2, and hence f(au) ∈ U0. Thus a ∈ R.

So R contains at least pd+1 elements, and hence the dimension of R
over Fp is at least d+1; since R is a subfield of F2d, this forces R = F2d,
as desired.

Case 3. For all u ∈ F×
2d, f(u) /∈ U1 ∪ U2.

Fix u ∈ F×
2d. For a ∈ L, as γ(u, au) = 0, we have f(au) ∈ Fpf(u)

∗.
If d > 1 then |L| > |Fp| and hence we can find a, b ∈ L distinct with
(a− b)u ∈ U0, a contradiction.

If d = 1 we have a basis 1, t for F2d with γ(1, t) = 0 and Q(t) =

−ϵ ∈ Fp with ϵ a nonsquare in Fp. If f(1) = u then we have f(t) = au∗

for some a ∈ Fp, and then examining the coefficient of of Q(f(t)) in
U1/U0 ⊗ U2/U0, we find a2 = ϵ, a contradiction. □

Now with p any fixed prime, we look for antichains among the qua-

dratic structures F (p)
d . For the remainder of this section we will write

Fd for F (p)
d . Our analysis of embeddings between two such structures

depends on the following.

Lemma 3.5. Let A, B be two abelian groups, and let f : A → B be a
function satisfying

f(a− b) = ±(f(a) = f(b)) for all a, b ∈ A,

where the sign may depend on the choice of a and b.
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Then either f is a homomorphism, or f = f0◦h where h : A→ Z/2Z
is a homomorpism and f0 : Z/2Z is any map vanishing at 0 (in this
case, B can be any group).

Proof. Since ±0 = 0 one has a reasonable theory of the kernel K of f .
Namely, setting K = {a ∈ A | f(a) = 0}, from 0−0 = 0 we find 0 ∈ K,
and for any k ∈ K we find

0 = f(k) = f(a+ k − a) = ±(f(a+ k)− f(a))

so that f(a + k) = f(a) for all a and in particular K is a subgroup,
with f constant on the cosets. So factoring out K we come down to
the case in which the function f is injective.

If at this point A ≃ Z/2Z we have nothing more to prove, so we
suppose this is not the case.

We remark that the claim trivializes if the image of f lies in an
elementary abelian 2-subgroup of B.

Our starting point is the relation

f(−a) = ±f(a)
We write A = A1 ∪ A2 (not neccessarily disjoint) with

A1 = {a ∈ A | f(−a) = −f(a)}
A2 = {a ∈ A | f(−a) = f(a)}.

Claim 1. A = A1 or A2 (or both)

Supposing the contraty we find a1 ∈ A1 \ A2 and a2 ∈ A1 \ A2 and
then computing f(a1 + a2) as f(a1 − (−a2)) or f(a2 − (−a1)) gives

±(f(a1) + f(a2)) = ±(f(a2)− f(a1))

and then either 2f(a1) = 0 or 2f(a2) = 0, which will put a1 into A2 or
a2 into A1, for a contradiction.

Case 1. f(−a) = f(a) for a ∈ A.
Then

f(2a) = f(a− (−a)) = ±0

and as f is injective, A is an elementary abelian 2-group.
We have supposed in this case that A is not cyclic. We will show

that the image of f lies in an elementary abelian 2-subgroup of B, to
conclude.

If the image of A in B does not lie in an elementary abelian subgroup
of B take a triple a1, a2, a3 of distinct elements in A for which 2f(a3) ̸=
0 and a1 + a2 = a3. Write bi = f(ai). As a3 = a1 − a2 we find

b3 = ±(b1 − b2)
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and up to a change of notation we may take b3 = b1 − b2. Similarly
b1 = ±(b2 − b3) = ±(2b2 − b1). The plus sign would give 2b3 = 0 so
we have the negative sign here, meaning 2b2 − 0. The same argument
applied to b2 gives 2b1 = 0, and a contradiction.

This concludes the treatnent of Case 1. Apart fro the degenrate case
involving Z/2Z, the function f factors through an embedding of ele-
mentary 2-groups.

We come now to the more typical case.

Case 2. f(−a) = −f(a) for all a ∈ A.
In this case our hypothesis can also be written as

f(a+ b) = ±(f(a) + f(b)).

Suppose now that a, b ∈ A and

f(a+ b) = −(f(a) + f(b)).

From a = (a+ b)− b we get

f(a) = ±(−f(a)− 2f(b))

which gives us

2f(a+ b) = 0 or 2f(b) = 0

and in the same way

2f(a+ b) = 0 or 2f(a) = 0.

So that in any case 2f(a+ b) = 0 and, finally

f(a+ b) = f(a) + f(b).

Thus in all cases f(a+ b) = f(a)+ f(b) and f is a homomorphism. □

Lemma 3.6. The structure Fd embeds into the structure Fd′ if and
only d′ is an odd multiple of d.

Proof. If d′ is an odd multiple of d then the fields Fd, F2d are contained
naturally in Fd′ , F2d′ , and the norm from F2d′ to Fd′ restricts to give
the norm from F2d to Fd.

Suppose now that f : Fd → Fd′ is an embedding induced by injec-
tions f1 : F2d → F2d′ and f2 : Fd → Fd′ which preserve the additive
structure.

For a ∈ F×
2d′ , the pair of maps α1 : F2d′ → F2d′ and α2 : Fd′ → Fd′ ,

given by multiplication by a and N(a), respectively, define an auto-
morphism of Fd′ .

As such automorphisms act transitively on the nonzero vectors of
F2d′ , we may assume that f1(1) = 1, and hence taking norms also
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f2(1) = 1. Let A, B be the kernels of the norm maps from F2d to Fd

and from F2d′ to Fd′ respectively.
On A and B we have the law

N(x+ y) = 2 + Tr(xy−1).

Hence from f2(N(x+ y)) = N(f1(x) + f1(y)) we get

2 + Tr(f1(xy
−1)) = 2 + Tr(f1(x)f1(y)

−1).

Taking a = f1(xy
−1), b = f1(x)f1(y)

−1, we find Tr a = Tr b, N(a) =
N(b) = 1, and hence a is b±1. Thus the triple (A,B, f1↾A) satisfies the
hypotheses of the previous lemma (written there in additive notation),
with f1 injective and |A| > 2. Accordingly f1 is a homomorphism on
A.

In particular, |A| divides |B|, and from this it already follows easily
that d′ is an odd multiple of d. Alternatively, notice that as f1 respects
addition and A generates F2d additively, f1 must be a field embedding.
Since f respects the norm, it again follows that d′ is an odd multiple
of d. □

As a byproduct of this argument, we see that the automorphism
group of Fd is the semidirect product of F×

2d with the Galois group of
F2d over the prime field, and that all embeddings from Fd into Fd′ ,
are conjugate under AutFd′ . The first statement could also be made
to follow from Kantor’s [8]; for this remark we thank Simon Thomas.

Corollary. With p fixed, let M be the set of prime numbers, or the set

of powers of 2, and let M be {F (p)
d | d ∈ X}. Then M is an infinite

antichain of a-indecomposable quadratic structures.

As an immediate consequence of this corollary, we may construct
2ℵ0 countable homogeneous nilpotent groups of class 2 and exponent
4, none of which contains a quaternion subgroup. From one point of
view this is a disappointment: a priori it seemed possible that such a
restriction might lead to a decent structure theorem.

As we have seen, the foregoing construction gives an alternate route
to the main result of [11, 12]. In the remainder of the present paper we
will combine our antichain with the ones produced in [11, 12] to get
a richer assortment of antichains of a-indecomposable structures, that
are naturally represented as 2-parameter families of a-indecomposable
structures.

4. More antichains in Q

We take p = 2 throughout the present section. We will make use of
the orthogonal direct sum of a family of quadratic structures Mi =
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(Ui, Vi;Qi):

⊥⊕
i
Mi = (

⊕
i

Ui,
⊕
i

Vi;
⊥⊕

i
Qi)

where by definition
⊥⊕
Qi (

∑
i ui) =

∑
iQi(ui) for ui ∈ Ui.

IfQ=
⊥⊕

iQi, then the associated bilinear form γ satisfies γ(Ui, Uj) =
0 for i ̸= j, so these spaces are orthogonal in the sense of γ. It should
be noted that the orthogonal direct sum is indeed again nondegenerate.
In a similar vein, if u ∈ U then u⊥ denotes the kernel of γ(u, ·). Let
M = (U, V ;Q) be a fixed finite a-indecomposable quadratic structure
of characteristic 2, which we will call the initial structure, and fix a
decomposition of U as (u)⊕U ′. We are going to build an infinite series
of a-indecomposable structures Mn associated with M.

In some cases the structures Mn will form an antichain for large
enough n. We do not have a good general criterion for this, but we will
show by an abstract argument that there are no “nice” embeddings
between the Mn, and use ad hoc considerations to show in special
cases that all embeddings are in fact nice, in the appropriate sense.

First, let Ai = (Ui, Vi;Qi) be a sequence of isomorphic copies of
M. Correspondingly write Ui = (ui) ⊕ U ′

i . Let T
n =

⊕
i≤n Ui, W

n =⊕
i≤n Vi. Set U

0,n = An ⊕ T n where An = (a1, . . . , an) is an additional

n-dimensional space, and set V 0,n = Bn ⊕ Cn ⊕ .W n where Bn =
(b1, . . . , bn) and C = (c2, ..., cn) are supplementary spaces of dimensions
n and n− 1 respectively.

Define Q0,n as follows:

(1) Q0,n =
⊥⊕

iQi on T
n;

(2) Q0,n(ai) = γ0,n(ai, ui) = bi;
(3) γ0,n(ai, aj) = cj for i < j;
(4) γ0,n(ai, uj) = 0 for i ̸= j, γ0,n(ai, U

′
j) = (0) for all i, j.

Finally we define Mn = (Un, V n;Qn) as follows:

Un = U0,n; V n = V 0,n/

(∑
j

bj,
∑
i

ci

)
; Qn is induced by Q0,n.

We will continue to give the same names to elements of V n that we
gave to their preimages in V 0n. Since we work exclusively in Mn, it
follows for example that

∑
i bi should now be understood to be 0.
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Lemma 4.1. For n ≥ 3, Mn is a quadratic structure.

Proof. It is necessary to check that Qn is nondegenerate. Observe that
for n = 2 we find

Q(a1 + a2) = b1 + b2 + c2 = 0,

so that M2 is in fact degenerate.
If a ∈ An and t ∈ T n then Q(a + t) ∈ (Bn ⊕ Cn) + Q(t), so if

Q(a + t) = 0 then t = 0 and Q(a) = 0. In particular, since the Bn-
component of Q(a) is 0, either a = 0 or a =

∑
i≤n ai. But in the second

case Q(a) = c2 + c4 + · · · ≠ 0, since n ≥ 3. □

Lemma 4.2. Suppose that the initial quadratic structure M is a-inde-
composable. Then the derived structures Mn are also a-indecomposable.

Proof. Let N be the free amalgam of two structures N1, N2 over a
common substructure N0, and suppose ι = (f, g) is an embedding of
Mn into N . Each copy Mi of M in Mn is carried by ι into one or the
other factor of N . However, the various copies of M are orthogonal,
with respect to γ, whereas in the free amalgam elements of different
factors cannot be orthogonal unless one of them lies in the common

part N0. It follows that ι[
⊥⊕

i Mi] is wholly contained in (at least) one
of the two factors, which we may take to be N1.

The next step is to check that f(ai) lies in one or the other factor,
for each i. If f(ui) is in N0 then this follows from the relation Qn(ai) =
γn(ai, ui). If f(ui) is not inN0 then the relations γn(aj, ui) = 0 for j ̸= i
force all f(aj) to lie in N1 for j ̸= i. But then

∑
kQ

n(ak) = 0 forces
f(Qn(ai)) to lie in N1, and hence f(ai) is in one of the two factors, in
view of the definition of Q in the free amalgam.

So now each element f(ai) lies in one of the two factors. Suppose that
two elements f(ai) and f(aj) do not lie in the same factor and i < j.
If j < n then as γ(ai, an) = γ(aj, an) and each of the elements f(ai),
f(aj), f(an) lies in one factor or the other, we get a contradiction, in
view of the structure of the free amalgam. It follows that we must have
j = n and that all f(ai) lie in the same factor for i < n. But now the
relation

∑
i γ(ai, ai+1) = 0 yields a contradiction after applying f . □

Lemma 4.3. Let i = (f, g) be an embedding of Mm into Mn such that
f [Am] ⊆ An, where m,n ≥ 3.
Then m = n, and f↾Am is induced by a permutation of the coordi-

nates (if n > 3, this is at worst a transposition of (1), (2)).
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Proof. Let

f(ai) =
∑
i

δikak

f(ui) ≡
∑
i

ϵikuk mod An ⊕
⊕
i

U ′
i ,

with coefficients δ, ϵ ∈ F2. Look at the B-components of the relations
derived by applying ι to Q(ai) = γ(ai, ui) and γ(ai, uj) = 0 for i ̸= j.
These are ∑

δikbk =
∑
i

δikϵikbk,∑
δikbk = 0,

both interpreted in Vn.
In other words we have the following two conditions.

(1) Either δikϵik = δik for all k, or else δikϵik = δik + 1 for all k.
(2) Either δikϵjk = 0 for all k, or else δikϵjk = 1 for all k.

We will now eliminate the second alternative in each of these condi-
tions..

We fix i.
If for some k we have δik = 0 then the second alternative is untenable

in both cases, regardless of the choice of j.
Suppose now that for our fixed i, δik = 1 for all k. Then for all j

(including i) conditions (1), (2) state that ϵjk = ϵj is independent of k.
We will show further that ϵj = 1 for j ̸= i. If on the contrary ϵj = 0 for
some j ̸= i, then (1) says that also δjk = δj is independent of k. But
this means that f(aj) is either 0 or f(ai), a contradiction. So indeed
ϵj = 1 for all j ̸= i. As n ≥ 3, for any i′ we can apply (2) with some
j ̸= i, i′ to conclude that δi′k is also independent of k, yielding the same
contradiction as above.

Thus conditions (1), (2) reduce to

δikϵik = δik, δikϵjk = 0 for all k, when i ̸= j.

For i < m, if we define Si = {k | δik = 1}, it follows that the sets
Si are pairwise disjoint. Then the equation derived from

∑
Qn(ai) = 0

by applying ι forces the Si to cover {1, . . . , n}, by considering its B-
component, and it forces the sets Si to be singletons, by considering
the C-component and bearing in mind that the sets are disjoint.

Since {1, . . . , n} can be covered by m disjoint singletons, we have
m = n, and f↾Am is induced by a permutation of the coordinates.
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For the final statement, assume n > 3, and let di be the number of
distinct nonzero values assumed by the function γ(ai, aj) as j varies.
For any i > 1, this is n− i+ 1, and for i = 1 it is n− 1. Thus we can
at worst permute a1, a2. □

Now fix d > 1. Taking Fd as the initial structure, construct the

sequence M(d)
n of associated a-indecomposable structures as described

above. For the antichain property it will be important that in Fd two
sets of the form u⊥ with u ∈ F×

2d either coincide or meet in (0).

Lemma 4.4. Let f : M(d)
m → M(d′)

n be an embedding. Then f [Am] ≤
An.

Proof. Let πk be the projection of Un onto the k-th component Uk of

Tn and Tk = πkf : U
(d)
m → Uk. Let tik = τk(ai), t

′
ik = τk(ui). Our goal is

to prove that each tik = 0.
Suppose first that for some k, there are at least two distinct i, j

with tik, tjk ̸= 0. Since γn(tik, t
′
ik) = Qn(tik) ̸= 0, we see that t′ik (and

similarly t′jk) are also nonzero. We have γm(aj, ui) = 0, so γn(tjk, tik) =

0. If t⊥ik = t⊥jk then γ
n(tik, tjk) = 0, a contradiction. As this is impossible,

we conclude that t⊥i′jk∩t⊥jk = (0). But then as γm(ai, U
′
i) = γm(aj, U

′
i) =

(0), we find that τk[U
′
i ] = 0.

On the other hand there is also an equation of the form γm(ui, u
′) =

Q(ui) holding in Ui with u
′ ∈ U , yielding γ(tik, 0) = Q(tik), a contra-

diction.
Our conclusion therefore is that for fixed k, there is at most one term

tik not equal to 0. Then the equation
∑

iQ
m(ai) = 0 shows that all of

these terms vanish, as claimed. □

So all of this proves the following.

Proposition 4.5. For each d, the series M(d)
n derived from the ini-

tial quadratic structure Fd is an infinite antichain of a-indecomposable
quadratic structures over F2.

Actually the result is a little stronger, because in the proof of Lemma
4.2 we never use the hypothesis that Mm and Mn are derived from
the same initial structure.

Lemma 4.6. Let f : M(d)
m → M(d′)

n be an injection with m,n ≥ 3.
Then d′ is an odd multiple of d.

Proof. By Lemma 4.3, we know that m = n and that f is induced by
a permutation of the coordinates, hence without loss of generality we
may take f to be the identity on An. It then follows easily that f takes

T
(d)
n into T

(d′)
n .
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Under this hypothesis, the last part of the proof of Lemma 4.3 shows
that the ui are fixed modulo An ⊕

⊕
i U

′
i , and since γn(aj, u) = 0 for

i ̸= j, it follows easily that they are fixed modulo
⊕

i U
′
i as well.

Let π : T
(d′)
n → F2d, ψ : Wn → Fd be induced by the projections

onto the first coordinate. We claim that (πf, ψf) embeds Fd into Fd′ ,.
It suffices to check that πf is injective.

Let L be the kernel of πf on U
(d)
i . Observe that if u, ũi ∈ U

(d)
1 with

u ∈ L and Q(u) = Q(ui), then ui ∈ L. Thinking of L as an F2-subspace
of F2d, this means it is closed under multiplication by elements in the
kernel K of the norm to Fd, as well as addition of course. But any
element a ∈ F2d can be written as the sum of two elements of the form
x + x−1 for some x ∈ K, hence L is a vector space over Fd. As L is
closed under multiplication by K, it must be (0) or F2d, and we know
by looking at u1 that the latter possibility may be excluded. □

Proposition 4.7. Let a set D of integers be chosen so that for d ∈
D, no nontrivial odd multiple of d lies in D. Then the set of derived

structures {M(d)
n | d ∈ D,n ≥ 3} is an antichain.

The relative freedom we have to construct such antichains suggests
the following.

Conjecture 1. Let X be a finite set of a-indecomposable quadratic
structures. Then there is an infinite antichainM of finite a-indecomposable
quadratic structures, such that no structure in X embeds into any struc-
ture in M.

5. More antichains in Qp for p odd

A prime p > 2 is fixed throughout.
We begin with the abstract portion of the construction, based on an

initial a-indecomposable quadratic structure M with a distinguished
decomposition of U as (u)⊕U ′ and leading to a derived series Mn of a-
indecomposable quadratic structures which may or may not constitute
an antichain.

So we introduce Ai = (Ui, Vi; yi) and ui, U
′
i , A

n, Bn, Cn, T n, W n as
in §4, and set U0,n = An ⊕ T n, V n = Bn ⊕ Cn ⊕W n.
To define the quadratic map Qn : U0,n → V 0,n we use the same

defining conditions (1–4) that were used in §4. Finally, we take Un =
U0,n, and we modify V 0,n as follows (this is the most subtle point of
the whole enterprise, copied over from [12]):

V n = V 0,n/

( ∑
1≤i≤n

bi,
∑

2≤i≤n

ci

)
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We write B(u) for Q(u, u) (and similarly Bn etc.). We note that the
next lemma uses the condition p > 2.

Lemma 5.1. Assume that n ≥ 3 and p > 3. Then Mn is a quadratic
structure.

Proof. It is necessary to check that Qn is nondegenerate. Observe that
for n = 2 we find Q(a1 + a2) = b1 + b2 + 2c2 = 0, so that M2 is
degenerate, and that for p = 3 we find

Q(a1 + (a2 − a3) + (a4 − a5) + · · · ) = 2(c2 − 2c3 + c4 − 2c5)

= 2(c2 + c+ 3 + · · · )
= 0.

If a ∈ An and t ∈ T n then Q(a + t) ∈ (Bn ⊕ Cn) + Q(t), so if
Q(a + t) = 0 then t = 0 and Q(a) = 0. In particular, since the Bn-
component of Q(a) is 0, a = α

∑
i≤n ϵiui with α ∈ Fp, ϵi = ±1. If α ̸= 0

then Q(a) = 2α2
∑

i<j ϵiϵjcj. Normalizing by ϵ1 = 1, we find

Q(a) = ϵ2c2 + (1 + ϵ2)ϵ3c3 + (1 + ϵ2 + ϵ3)ϵ4c4 + · · · .
Inspection of the first two coefficients shows that ϵ2 = 1 and the char-
acteristic must be 3. □

Lemma 5.2. Suppose that the initial quadratic structure M is a-
indecomposable. Then the derived structures Mn are also a-indecom-
posable.

Proof. Not a word needs to be changed in the proof of Lemma 4.2, given
that Q(u) is taken to mean γ(u, u), until the very last line, where some
minus signs must be inserted in keeping with the current setup. □

Lemma 5.3. Let ι = (f, g) be an embedding of Mm into Mn such that
f [Am] ⊆ An, where m,n ≥ 3.
Then m = n, and f↾Am is induced by a permutation of the coordi-

nates (if n > 3, this is at worst a transposition of (1), (2)).

Proof. Let f(ai) =
∑

i δikak and let f(ui) ≡
∑

i ϵikuk mod (An ⊕i U
′
i),

with coefficients δ, ϵ ∈ Fp.
Our first claim is that for every i, there is at least one index k for

which δik = 0.
Suppose that i is fixed, and for all k we have δik ̸= 0. Choose indices

i′, j so that i, i′, j are all distinct. From the equation γm(ai, uj) = 0, by
considering the B-component after applying i, we deduce that δikϵjk =
α is independent of k. Similarly δi′kϵjk = β is independent of k. If a = 0
then all ϵjk vanish, contradicting Qm(aj) = γm(aj, uj). So a ̸= 0 and
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hence all ϵjk are nonzero, forcing δi′k to be a constant multiple of δik,
so that f(ai) and f(a

′
i) commute, a contradiction.

Now examine theB-components of the equationsQm(ai) = γm(ai, ui)
and γ(ai, uj) = 0 for i ̸= j. These state

δ2ik = δikϵik + αi δikϵjk = βij,

with αi, βij ∈ Fp independent of k.
As some δik is 0, we find that αi, βij are all zero. When δik ̸= 0 these

equations then become

δik = ϵik ϵjk = 0−

Therefore, if we let Si = {k : δik ̸= 0}, then the sets Si are disjoint
as i varies. Now we apply the relation

∑
iQ

m(ai) = 0 (or rather, the
relation we get by applying ι to this). Looking at the B-component
we find that the sets Si cover {1, . . . , n}, and then looking at the C-
component, bearing in mind that we know the sets are disjoint, we find
that they are singletons. The claim then follows. □

Now fix d. Taking Fd as the initial structure, construct the sequence

M(d)
n of associated a-indecomposable structures as described above. For

the antichain property it will be important that in Fd, two sets of the
form u⊥ with u ∈ F×

2d either coincide or meet in (0).

Lemma 5.4. Let f : M(d)
m → M(d′)

n be an embedding. Then f [Am] <
An.

Proof. Let πk be the projection of Un onto the k-th component Uk of

T n, and τk = pikf : U
(d)
m → Uk. Let tik = τk(ai), t

′
ik = τk(ui). Our goal

is to prove that each tik = 0.
As in the proof of Lemma 4.4, if k is fixed so that tik ̸= 0 for some

i, then there are at least two indices i < j for which tik, ti′k ̸= 0, and
for any such i, j, k we have t⊥ik ∩ t⊥jk = (0). If there is a third index j′

for which tj′jk is also nonzero, then similarly t⊥jk ∩ t⊥j′k = (0) and hence
t′ik = 0, a contradiction. We may therefore suppose that tik, tjk are
nonzero, with i < j, and that tj′k = 0 for any other index j′.
Now from the conditions∑

i<m

γ(ai, ai+1) = 0 γ(ai, aj) = γ(aj−1, aj),

by applying f and then looking at the k-th coordinate, we find that
γ(tik, tjk) = 0. Since γ(t′ik, tik) = 0, we conclude γ(tik, t

′
ik) = 0, a con-

tradiction. □

So all of this proves:
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Proposition 5.5. For each d, the series Md
n derived from the ini-

tial quadratic structure Fd is an infinite antichain of a-indecomposable
quadratic structures over Fp.

Actually the result is a little stronger, because in the proof of Lemma
5.2 we never use the hypothesis that Mm, Mn are derived from the
same initial structure. Arguing as in §4 we get the following.

Lemma 5.6. Let f : M(d)
m → M(d′)

n be an injection with m,n ≥ 3.
Then d′ is an odd multiple of d.

As before, we may conjecture that there is an infinite antichain meet-
ing an arbitrary finite set of negative constraints.

One final comment. Though we defined the notion of quadratic struc-
tures differently in the two cases-even or odd characteristic-both no-
tions make sense formally in all characteristics. The alternating version,
associated with groups, gives rise to infinite antichains of a-indecom-
posable structures in all characteristics but only yields groups in char-
acteristic 2, while the symmetric version, associated with rings, yields
rings in all characteristics but only gives rise to infinite antichains of
a-indecomposable structures in odd characteristic (in some cases, only
in characteristic greater than 3). Thus circumstances conspire to keep
the two cases well apart.
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