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Introduction

While attempting to find methods of some generality for computing
a model-theoretic invariant of finite structures (the arity, or relational
complexity, as defined in §1, we found it useful to compute a number of
examples by making use of a related integer lattice Lr depending on a
single parameter r. These computations have led to a plausible formula
for this invariant which is at least a correct lower bound, and is exact
in the few cases we were able to check directly. For more details, see
§3.

In order to make explicit machine computations in the lattice Lr

we were led to prove a few results of a general character about it. In
particular we determine its rank and we give an explicit basis which
has some properties which are computationally convenient.

First author supported in part by NSF Grants DMS 89.03006 and the yer in
Field Arithmetic of the Institute for Advanced Studies, Jerusalem, academic year
1991–92.
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Our computations involve certain sublattices of L4 for which it would
also be interesting to know the ranks, and more interesting to know the
discriminants. We will give our results on the lattice Lr here and indi-
cate their relevance to machine computations bearing on the original
model theoretic problem. The work that led to these computations,
and was in turn influenced by them, is reported in detail in [CM].

Our model theoretic problem may be recast in the following purely
combinatorial form. Fix an integer r and a set X with r elements. For
i ∈ X we say that two relations on the set X agree modulo i if their
restrictions to X − {i}, and similarly that two multi-sets {R1, . . . , Rd}
and {R′

1, . . . , R
′
d} agree modulo i if the restrictions to X\{i} agree as

multi-sets (i.e., up to some re-ordering).
The combinatorial problem is then to determine under which con-

ditions we can find two distinct multi-sets of equivalence relations on
the set X which agree modulo each element of X. More precisely, the
question is the following.

Problem 1. Given parameters r and n with r ≥ n ≥ 2, find the least
value d for which there are two disjoint multi-sets each consisting of
d equivalence relations on a fixed set X of r elements, satisfying the
following conditions.

(1) Each of the equivalence relations occurring has at most n classes.
(2) At least one of the equivalence occurring (in at least one of the

two multi-sets) has exactly n classes.
(3) The two multi-sets agree modulo each element of X.

Notation 0.1. We denote by δ(r, n) the least d satisfying the condi-
tions of Problem 1.

Example 1. We have δ(3, 3) = 3. This is illustrated (as an upper
bound) by the following two multi-sets of equivalence relations on the
set {1, 2, 3}, where the relations are represented by their classes.

E1 E2 E3 E ′
1 E ′

2 E ′
3

{1}{2}{3} {1}{2}{3} {1, 2, 3} {1}{2, 3} {1, 3}{2} {1, 2}{3}
We will describe the original model theoretic problem in §1 which

leads to this combinatorial problem, and is almost equivalent to it. Our
focus here will be on the determination of the function δ rather than the
model theoretic information to be extracted from it. Readers more in-
terested in combinatorics than in model theory will find that the results
and conjectures of the remaining sections can be read independently of
§1.

One may wonder whether δ(n, r) is in fact defined. In fact for n = 2
and for r odd, no suitable value of d exists, and we set δ(n, r) = ∞ in
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that case. One can easily show that δ(r+2, n+2) ≤ 2δ(r, n), and there
is also some evidence that this inequality may be an equation. If this is
correct then the values of δ are determined by δ(r, 3) and either δ(r, 2)
(for r even) or delta(r, 4) (for r odd). It can easily be shown that

δ(r, 2) = 2r−2

for r even, but for n = 3 or n = 4 the precise values are conjectural
(see §3 for a precise conjecture).1

In this context machine computation of explicit values can be useful.
We will see that the computation of the function δ amounts to the
determination of a vector of minimal length in an appropriate integer
lattice. With r fixed, consider the space Vr (over some field of charac-
teristic 0) having as basis the set of all equivalence relations on a fixed
set X with r elements. Associate to a pair of multi-sets of equivalence
relations the difference of their characteristic vectors in Vr. If the two
multi-sets are disjoint then they can be recovered from the associated
vector. In the case of interest here, where the two multi-sets have equal
cardinality d, that cardinality is half the ℓ1 norm of the associated
vector.

The vectors of interest are the integer vectors that represent a pair of
multi-sets whose restrictions modulo each element of X coincide up to
order. This condition is expressed by a set of homogeneous linear equa-
tions. Let Lr be the lattice of all integral solutions to these equations.
Let Lr,n be the sublattice of vectors with all entries corresponding to an
equivalence relation with more than n classes vanishing. Then δ(n, r)
is half the ℓ1-norm of the shortest vector in Lr,n and not in Lr,n−1.

Our approach to explicit computation has been to generate a conve-
nient basis for Lr and to hunt for suitable short vectors in Lr,n out to
a specified radius d, making all computations relative to the basis for
Lr. This is a computation which might not appear to be feasible over
a significant range of the parameters. In fact we have been limited to
r ≤ 7.

The key parameter here is the rank of the lattice Lr. The radius d
and (to some slight extent) the ambient dimension vr = dim(Vr) (the
Bell numbers, which grow rapidly) also come into consideration. We
give the first few values of these parameters.

r: 1 2 3 4 5 6 7 8 9 10

vr: 1 2 5 15 52 203 877 4140 21147 115475

ℓr: 0 1 1 4 11 41 162 715 3425 17722

1The value of δ was determined subsequently by Daniel Saracino in a series of
three papers, and turned out to be quite complicated.
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In §2 we discuss the lattice Lr and give a particular basis for it. In
particular we work out the rank of the lattice and show that the basis
found is spares and the vectors have coordinates of small size. These
properties facilitate computations of the sort we have discussed.

It would be interesting to have similar information for the sublattices
Lr,n, and to know their discriminants, but we do not even know the
discriminant of Lr.

We thank Thomas Müller for directing our attention to [Be].

1. The arity of wreath products

1.1. Types and arity. We work with finite structures, for which model
theory and permutation group theory provide closely related points of
view. Any finite structure gives rise to an associated permutation group,
namely the automorphism group with its action on the structure, and
the relations invariant under that group are those definable in the orig-
inal structure. So we will give our main definition in permutation group
theoretic terms.

We consider a permutation group G acting (faithfully) on a set X.
G acts on each cartesian power Xs coordinatewise. The orbits under
this action are called s-types. Two elements of the same orbit will be
said to be conjugate (or G-conjugate).

In particular when G is the full symmetric group then the s-types
correspond to equivalence relations on the coordinates 1, . . . , s: to spec-
ify such an orbit is to specify which entries should be equal.

The key definition, which corresponds model theoretically to quan-
tifier elimination, is the following.

Definition 1.1. Given a permutation group (G,X) and r ≤ s, we say
that “r-types determine s-types” if the following criterion for conjugacy
of s-tuples is valid.

Two s-tuples a, b are conjugate if their respective restric-
tions to an arbitrary r-set of coordinates are conjugate.

There are other ways in which r-types might determine s-types; this
is the strongest such notion, and corresponds to quantifier-free defin-
ability of relations in s variables from relations in r variables.

If (G,X) is a permutation group with |X| = n then it is easy to
see that N -types determine s-types for all s ≥ n. We define the arity
of G as the least r such that r-types determine s-types for s ≥ r; or,
equivalently, so that r-types determine n-types.2 We may also define

2In more modern usage this tends to be called the relational complexity.
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the arity as the maximal r for which (r − 1)-types do not determine
r-types. This is the way we tend to view it in practice.

Some examples are in order. The arity of the natural action of Sym(n)
for n > 1 is 2 (which in model theoretic terms emphasizes the impor-
tance of the equality relation). For the natural action of Alt(n) it is
n − 1. Group theoretically these are quite similar actions but model
theoretically they lie at the two possible extremes.3 The arity of the
regular action of any non-trivial group on itself is 2.

A more interesting family of examples is given by the following.

Fact 1.2 ([CM]). Let G = Sym(n), take k ≥ 1 with 2k ≤ n. Let

[
n

k

]
be the family of all k-subsets of {1, . . . , n}.

(1) The arity of the natural action of G on

[
n

k

]
is

2 + ⌊log2 k⌋.

(2) The arity of the natural action of G on P({1, . . . , n}) is
1 + ⌊log2 |X|⌋.

As a concrete illustration take n = 5 and k = 2. Then

[
5

2

]
may be

thought of as the Petersen graph. That is, if we connect two k-sets by
an edge when they are disjoint, we get a graph whose automorphism
group is Sym(5) with the natural action on pairs. The arity of the
action is not 2, but 3. That is, there are two 3-types which are not

determined by their constituent 3-types. If we identify the pairs in

[
5

2

]
with edges in the complete graph on 5 points, then these triples consist
of edges which meet pairwise in one point, but form either a triangle
or a star inside the complete graph on 5 vertices.

1.2. Wreath products and powers. If (G,X) and (H,Y ) are two
permutation groups then there is a natural action of the wreath product
G ≀ H on XY . Here G ≀ H is the subdirect product GY ⋊ H with H
permuting the factors of GY , and the subgroup GY acts coordinatewise
on XY while H again permutes the factors. Determining the arities of
such wreath product (power) actions in terms of the constituents G and

3In fact the bound r ≤ n mentioned above becomes r ≤ n− 1, bearing in mind
that a permutation whose action is known on n− 1 points is fully determined).
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H seems very challenging, even when H is a symmetric group Sym(d)
acting naturally on d elements: G ≀ Sym(d) acting on Xd, a power in
the most straightforward sense. We generally denote this action simply
by Xd when the context allows it.

We have in particular the case in which G is also a symmetric group
acting naturally. We may then write nd for the action of Sym(n)≀Sym(d)
on {1. . . . , n}d. This is the case to be considered here, in fact.

Examples of the form n2 were already considered in connection with
the study of homogeneous finite graphs [Gar]. These are grid-like graphs
where the edge relation is as follows: the pairs a, b ∈ n2 have exactly one
coordinate in common. However the rows and columns of these grids
are themselves complete graphs. They are also called the line graphs
of the complete bipartite graphs Kn,n. For n ≤ 3 the graphs have arity
2, that is the orbits on s-tuples are given by the isomorphism types of
the induced graphs. For n ≥ 4 the arity is 4 and the critical 4-types
consist of pairs of disjoint edges which either parallel or orthogonal in
the sense of the grid. We have found a qualitatively similar behavior
for nd: with d fixed, there is a “generic” value for large d and a gradual
increase to it depending on the value of n, with exact values not yet
determined.

For general wreath product actions on powers, we have an upper
bound in terms of the arity of G,X) and the arity of the action of
H on P(Y ) induced by its action on Y . This of course also raises
the question of the determination of the latter. It may be computed
explicitly in some non-trivial cases. We have the following bounds in
general [CM].

Fact 1.3. Let (G,X) and (H,Y ) be permutation groups. Let rG and
r∗H denote the arities of G on X and of H in the induced action on
P(Y ). Let ρ(G,H) denote the arity of G ≀H acting on XY . Then

max(rG, r
∗
H) ≤ ρ(G,H) ≤ rG · r∗H .

Fact 1.4. Let G = Sym(n) acting naturally on

[
n

k

]
and let (H, Y )

be any permutation group. Let rG,k be the arity of G in the action on
k-sets, r∗H the arity of H acting on P(Y ), and ρ(G, k,H) the arity of

G ≀H acting on

[
n

k

]Y

.

Suppose that

n ≥ 2k · r∗H .
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Then

ρ(G, k, Y ) = rG,k · r∗H .

Combining Facts 1.2 and 1.4 gives a more explicit result when H
the full symmetric group on Y , which for k = 1 takes on the following
form.

Corollary 1.5. For n ≥ 2 · ⌊1 + log2 d⌋ the arity of nd is

2⌊1 + log2 d⌋.

The behavior for n below the given bound is more erratic. For n = 2
we have an explicit formula for the arity of 2d [CM]:

2⌊1 + log4 d⌋,
or in other words, roughly half the value for large n. At this point one
would like to see some detailed data.

In the first table on the next page we give some conjectured values
for the arity of nd in all cases for which d ≤ 36 and the value of n is
below the generic range. These numbers give valid lower bounds. None
of the predicted values with r ≥ 8 are supported computationally as
exact values. The values with r ≤ 7 are supported to varying degrees.
In particular all of those in the range d ≤ 7 were checked. As we have
indicated, the first and last (zigzag) rows of the table, corresponding
to n = 2 and to n = 2⌊1 + log2 d⌋, are known to be exact in general.
The actual conjectures behind the table are given afterward, in §3.

We present the data in what is ultimately a more useful way in a
second table that gives d as a function of n and r, namely, the smallest
value of d which, for a given value of n, suffice to raise the arity of nd to
exactly r (when it exists). This leads to more transparent conjectures
and to a useful way of analyzing the original problem. We will make
this more formal in the next subsection.

1.3. The function δ(r, (G,X)).

Definition 1.6. Given a permutation group (G,X), let δ(r, (G,X))
denote the least d for which r − 1-types do not determine r-types in
(G,X)d, if there is one, or ∞ otherwise.

We can formulate our results and conjectures in a straightforward
manner in terms of this function, and this gives a determination of the
arity of each (G,X)d, at least implicitly. That is, the arity of (G,X)d

is the least r satisfying

δ(s, (G,X)) > d for all s > r.
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One might reasonably anticipate that in the case G = Sym(n) acting
naturally, this would turn out to be the function δ(r, n) we discussed
in the introduction, but this is not quite right. In fact, we have

δ(r, Sym(n)) = inf(r | δ(r′, n′) > d for r′ > r and n′ ≤ n).

for the natural action of Sym(n), because our definition of δ(r, n) is
more precise in its measurement of the effect of the parameters, notably
the parameter n.

A more practical version of the formula just given restricts r′ to
values satisfying

r < r′ ≤ 2⌊1 + log2 d⌋.

We give an example to clarify these considerations. The arity of 316

should be 6, as in 216. In particular 5-types do not determine 6-types
in 316. But if we want an example that shows this, and that actually
makes use of the fact that we have 3 distinct points in the base, we have
to go to 325 rather than 316. This point does not affect the computation
of the arity but does affect our understanding of how the parameters
n, r, d all interact in this context.

After these preliminaries we can connect the model theoretic and
combinatorial invariants directly. We focus on the following condition.

r − 1-types in (G,X)d do not determine r-types.(∗)

View the elements of (G,X)d lying in a given r-tuple as the rows of
a table of shape r × d with entries in X. To conjugate one such table
to another in G ≀ Sym(d) we must permute the columns by Sym(d)
so that corresponding columns have the same r-type in (G,X). So we
may associate to one such table the multi-set of r-types represented
by its columns, and two such tables represent the same r-type if these
multi-sets coincide.

When we restrict to (r − 1)-tuples we omit the row corresponding
to one index from {1, . . . , r}. Thus to show that (r − 1)-types do not
determine r-types in (G,X)d we require two distinct multi-sets of size
d consisting of r-types from (G,X), which coincide when restricted to
(r − 1)-types by in each of the r possible ways.
This becomes considerably more concrete when (G,X) is itself the

natural action of Sym(n). Then the r-types are given by the equivalence
relation on {1, . . . , r} specifying when two entries are the same, and so
we must have distinct multi-sets of equivalence relations on the set
{1, . . . , r} which coincide when any single element is deleted. For this
to be realized in nd, the equivalence relations in question must have
at most n classes. We come back to the original definition of δ(r, n),
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apart from the additional restriction that at least one of the equivalence
relations actually has n classes, so that the same example does not arise
in connection with (n′)d for some n′ < n. As we have mentioned, this
additional constraint is not essential in theory, but is useful in practice.

To sum up then, consideration of the arity of wreath product actions
on powers leads to the consideration of a general function δ(r, (G,X))
and a slightly more precise variant δ(r, n) in the particular case of
wreath products of natural actions of symmetric groups. This approach
seems well suited to the study of arity in (G,X)d for general (G,X),
where the full symmetric group Sym(d) acts on the factors.

In principle one can also compute in an associated integral lattice,
but the rank tends to increase very rapidly. From this point on we
restrict our attention to the powers nd.

2. The lattice Lr

We have explained our motivation for studying the function f(r, n).
Now we introduce the associated integer lattice Lr and its sublattices
Lr,n, which are used in explicit computations, and we give the results
described in the introduction.

2.1. The space Vr and the lattice Lr. We may take the rational
field as base field and let Vr be the vector space with basis vectors all
equivalence relations E on the set {1, . . . , r}. Let Vr,n be the subspace
generated by the equivalence relations with at most n classes. The
dimension of Vr is called the Bell number Br.

4 Bell gave the following
estimate for these numbers.

ar−ar
r ear−1(log ar)

−1/2

where ar is very roughly r, but is defined by the condition

ar ln ar = r − 1/2.

Given two multi-sets of equivalence relations of the same size, E =
{E1, . . . , Ed} and E ′ = {E ′

1, . . . , E
′
d}, we encode each by the vector of its

multiplicities and let v(E , E ′) be the difference of these two vectors. We
wish to impose the condition of equality of restrictions for 1 ≤ i ≤ r:

The restrictions of E and E ′ to {1, . . . , î, . . . , r} coincide.(†)
More explicitly, for each index i and each equivalence relation E on

{1, . . . , î, . . . , r}, the condition is that the restrictions of E and E ′ to

4We learn that this was a number of particular interest in classical Japanese
mathematics—and art—due to its association with The Book of Genji and a game
(genjiko) involving discriminating among five possibly distinct fragrances of incense.
Stylized representations of equivalence relations on 5 elements are a recurrent motif.
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that set contain E with the same multiplicity. This is a condition on
the coordinates of v(E , E ′) which restrict on that set to E, and is a
homogeneous linear equation.

Let Lr be the integer lattice defined by those homogeneous linear
equations, and let Lr,n be Lr ∩ Vr,n.

This may also be expressed as follows. For 1 ≤ i ≤ r let αi : Vr−1 →
Vr be the linear map taking the basis element E to the sum of its exten-
sions of {1, . . . , r}, where E is viewed as a relation on {1, . . . , î, . . . , r}.
Then we are taking the intersection of the subspaces (αi[Vr−1])

⊥. and
Lr consists of the integer points in (

∑
i imαi)

⊥.

2.2. The rank of Lr. If X ⊆ {1, . . . , î, . . . , r}, we define a map αX :
Vr−|X| → Vr as we defined αi (in particular, α{i} = αi). It may also
be defined as the composition of the corresponding maps αi (modulo
the natural identifications of vector spaces), taken in any order. The
composition with the restriction map back to Vr−|X| is diagonal and
invertible so the map is invertible. Accordingly the dimension of the
image of αX is Br−|X| and this space is contained in the intersection of
the images of the maps αi.

In fact we claim that

imαX =
⋂
i∈X

imαi.

Let v ∈ imαi for all i ∈ X and let E,E ′ be two equivalence relations
which agree on {1, . . . , r}\X. We claim v ∈ imαX . It suffices to check
the equality of coordinates

vE = vE′

This reduces to the case in which E ′ can be obtained from E by moving
one index out of one E-class and into another (possibly a new one). As
v ∈ imαi the claim holds in this case.

Thus we have

dim
⋂
i∈X

imαi = Br−|X|

and thus by a version of inclusion/exclusion we find

dim(
∑
i

imαi) =
r∑

i=1

(−1)i−1

(
r

i

)
Br−i

The dimension of Lr is then

dim(
∑
i

imαi)
⊥ =

r∑
i=0

(−1)i
(
r

i

)
Br−i
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We remark that by inclusion/exclusion the number
∑r

i=0(−1)i
(
r
i

)
Br−i

also counts the number B′
r of equivalence relations with no singleton

classes (associate to any set X the set of equivalence relations having
each element of X as a singleton class). So the rank of Lr may also be
written as B′

r. We remark that this is also the number of equivalence
relations on r − 1 points which do have singleton classes: for such a
relation, we can group its singletons together and adjoin r to get a
relation on r points with no singletons, and this is reversible.

For computational purposes we define a particular ordering on the
equivalence relations on the set {1, . . . , r}. Individual subsets are com-
pared by first comparing cardinality, and then taking the lexicographic
order for subsets of equal size. Equivalence relations are then viewed as
ordered partitions, and compared lexicographically. In particular, rela-
tions having some singleton class appear before those which do not.

Now define a 0, 1-matrix with rows indexed by equivalence relations
on {1, . . . , r} having at least one singleton class, and with columns
indexed by all equivalence relations on that set (taken in order). The
entry is 1 if the relations agree modulo the first singleton in the relation
indexing the row, and is 0 otherwise. The matrix is upper triangular
with 1s on the main diagonal. We illustrate for r = 3.

[1][2][3] [1][23] [2][13] [3][12] [123]

[1][2][3] 1 0 1 1 0

[1][23] 0 1 0 0 1

[2][13] 0 0 1 0 1

[3][12] 0 0 0 1 1

We claim that the rows form a basis for
∑

i imαi. They are linearly
independent and we have the correct number, so it suffices to check
that each row lies in the image of some αi.

In the row corresponding to the relation E let {i} be the first sin-

gleton occurring, and let E0 be the restriction of E to {1, . . . , î, . . . , r}.
Them the row is αi(E0). Thus our claim holds.
To get a basis for Lr we therefore solve the corresponding linear

system by row reduction to the form [I|A] and take as our basis the

columns of

[
−A

I

]
with I the identity matrix of appropriate size.

For r = 4 this yields the following basis, writing rows rather than
columns for the sake of the display.
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1

2

3

4

1

2

34

1

3

24

1

4

23

2

3

14

2

4

13

3

4

12

1

234

2

134

3

124

4

123

12

34

13

24

14

23
1234

[12][34] 1 -1 0 0 0 0 0 0 -1 0 0 1 0 0 0

[13][24] 1 0 -1 0 0 0 -1 0 0 0 0 0 1 0 0

[14][23] 1 0 0 -1 0 -1 0 0 0 0 0 0 0 1 0

[1234] -3 1 1 1 -1 1 1 -1 1 -1 -1 0 0 0 1

Given the form of the initial incidence matrix it is easy to see what
these entries represent in general. Thinking of this in its original form,
as a set of columns vE indexed by equivalence relations which do not
have singleton classes, with entries indexed by arbitrary equivalence
relations E ′ on the same set, the coordinate of vE at position E ′ will
be nonzero if and only if E can be converted into E ′ by removing some
elements from one or more classes and making them singletons. In that
case we must count the number of ways this transformation can be
made if it is broken down into a series of steps in which each class
is transformed in turn by removing a decreasing sequence of elements
from that class, with the minimal element the last one removed (when
only two remain). Since E ′ is specified, and we know which elements
must become singletons, there is usually only one way to do this; but if
the class C has k elements and it is entirely broken down into singletons
in E ′, then there are k − 1 ways to do this. This leads to the following
formula for the entry (when non-zero).∏

C

nC(E,E ′)

where C varies over classes of E and nC(E,E ′) depends on the size of
C and the number k of singletons of E ′ lying in C, as follows.

nC(E,E ′) =

(−1)k if k < |C|
(−1)k(k − 1) if k = |C|

Here the decreasing order of removal of elements corresponds to the
usual order of row reduction.

In particular the coordinates of these vectors are not too large as a
function of r, of the order of magnitude not more than er/e. In partic-
ular, for r ≤ 8 the coordinates have absolute value at most 9. Further-
more, the number of non-zero coordinates in a basis vector indexed by
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an equivalence relation with c classes, of sizes n1, . . . , nc, is∏
i

(2ni − ni),

at most 2r − r in any case, and usually much less.
For example, in L7 the ambient space has dimension 877, the lattice

has rank 162, and the basis vectors have at most 121 nonzero coordi-
nates, and in fact only one has more than 60. This comparative sparsity
allows us to sort the basis so that vectors are determined by short ini-
tial segments. As a result one can search for short vectors in the lattice
in a direct fashion, terminating unprofitable branches rapidly. And the
sparsity has other advantages in terms of efficient storage and process-
ing of large bases.

These computations serve their intended purposes, as we describe in
the next section, and suggest profitable lines to pursue more concep-
tually. The lattices which arise seem to have their own combinatorial
interest as an expression of relations among equivalence relations sat-
isfying various constraints.

3. Conjectures on δ

The computations described in §2 gave the values of δ(r, n) for n ≤≤
6 as well as some upper bounds for n ≤ r = 7 which we think are prob-
ably the correct values (the largest being δ(7, 3) ≥ 45). More useful
than the numerical values are the examples encoded by the correspond-
ing vectors, namely specific pairs of multi-sets of equivalence relations
satisfying our conditions, which suggest general constructions and up-
per bounds for δ which are valid generally. These correspond to lower
bounds on the arity of the sort discussed in §1.

There is a general relation

δ(r + 2, n+ 2) ≤ 2 · δ(r, n)

which may be seen as follows.
if d = δ(r, n) and E , E ′ are distinct multi-sets of d equivalence re-

lations on r elements with the largest number of equivalence classes
occurring equal to n, and with the usual condition that the restrictions
modulo any of the r elements agree, then we add two elements a, b and
form new multi-sets Ê and Ê ′ on the r+2 elements {1, . . . , r}∪{a, b} by

taking Ê to consist of the relations of E extended by a and b as singleton
classes, and the relations of E ′ extended by the single class {a, b}, and
taking Ê ′ similarly, with the roles of E and E ′ reversed. We then have
multi-sets of size 2d which give the stated bound on δ(r + 2, n+ 2).
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We conjecture that the inequality is an equation in general. Small
sporadic counterexamples would not be surprising but they have not
appeared as yet in the computations of small values. This conjecture
then leads to the following.

Conjecture 1.

(1) δ(r, n) = 2(n−2)/3δ(r − n+ 2, 2) for r ≥ n ≥ 2 both even.
(2) δ(r, n) = 2(n−3)/2δ(r − n+ 3, 3) for r ≥ n ≥ 3 and n odd.
(3) delta(r, n) = 2(n−4)/2δ(r − n + 4, 4) for r ≥ n ≥ 4 and n even

(which is relevant if r is odd).

We also have the following, which is easily checked.

Fact 3.1 ([CM]). δ(r, 2) = 2r−2 for r even.

So the conjecture becomes

δ(r, n) = 2(r−n/2)−1

for r, n both even. In the other cases the formulas will be messier and
it is better simply to write out the conjectures for the minimal cases
required.5

Conjecture 2.

(1) δ(r, 3) =
3 · (2r−3 − 1) for r ≥ 5 odd.

2r−1 − 2r/2 + 1 for r ≡ 2 (mod 4).

(1/2)(6r/2−1) for r ≡ 0 (mod 4).

(2) δ(r, 4) =12(2r−5 − 1) for r ≡ 3 (mod 4), r ≥ 7.

2r−2 + 2r−3 − 2(r−3)/2 for r ≡ 1 (mod 4).

One also requires the value δ(3, 3), which appears to be an isolated
case.

The five equations conjectured represent valid upper bounds for the
values of δ. This is proved by constructing the corresponding examples.

Example 2. Suppose r is divisible by 4. Divide r elements into r/2
pairs. Consider all equivalence relations with at most 3 classes such
that no class contains any of the distinguished pairs. Fixing one pair,
that determines two of the classes. Each of the remaining r/2− 1 pairs

5These conjectures were substantially modified already in [CMS].



16 GREGORY CHERLIN AND GARY MARTIN

may then be assigned to one of these classes, or a third, in 6 ways. So
there are 6r/2−1 such equivalence relations.

One then checks that these may be divided into two disjoint families
whose restrictions on removal of any vertex coincide. One way to get
at this is to start with the relation that has only two classes and then
consider the effect of successively displacing elements from one class to
another (which may be the third). Details will be given in [CM].

The net result of this construction is that

δ(r, 3) ≤ 1

2
6r/2−1

Qualitatively, our conjectures would indicate that the arity of nd

should be approximately log2 d) + n/2 + 1 over the critical range n ≤
2⌊1 + log2 d⌋, or somewhat more precisely 2⌊log4 d + n/4 + 1/2⌋, with
the value exact when d is a power of 2.

4. Postscript

This version of the paper incorporates a few scattered remarks about
later developments but does not address the various kinds of progress
made since its original publication. For that, one should look for articles
on the topic of relational complexity in the group theoretic, combina-
torial, or model theoretic literature. There is a great deal that is still
not known in the context of natural actions of the symmetric group,
notably the determination of the relational complexity of powers of the
action on k-sets for k > 1, or the action on partitions of fixed shape,
which, though puzzling questions, are not beyond all conjecture.[Bro]
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