
Infinite homogenous directed graphs

Gregory L. Cherlin

Mathematics Department

Rutgers University

Hill Center

BuschCampus

New Brunswick

NJ 08903

ABSTRACT. The classification of the (countable) homogeneous directed graphs is complete. It

has been known for almost two decades that there are 2ℵ0 homogeneous directed graphs. We

use methods devised by Lachlan and Woodrow, and applied by them to the case of homogeneous

undirected graphs, and by Lachlan to the case of tournaments. Ours is the first case in which

an uncountable collection of structures is handled by these methods. The methods used will first

be sketched in the context of tournaments, then in our case. They combine a rather artificial

inductive procedure with a timely use of Ramsey’s theorem introduced by Lachlan in his work

on tournaments. We also describe some examples, including a rather strange one uncovered

by the classification procedure, and some related problems, for the most part open. We devote

considerable attention to a decision problem connected with the classification which remains open.

This problem has been studied by Brenda Latka, and is equivalent to a recognition problem for

well quasi-ordered families of tournaments defined by finitely many constraints.

1. Introduction

1.1. HOMOGENEITY

1.1.1. Definition. A structure Γ is said to be homogeneous if any isomorphism between

finitely generated substructures of Γ is induced by an automorphism. (Since we will be interested

in combinatorial structures like directed graphs, and there are no functions present, we may say

“finite” rather than “finitely generated” in our context.)

The condition of homogeneity is obviously very strong – it is more or less the strongest tran-

sitivity hypothesis one could place on the automorphism group of a countable structure. Ac-

cordingly the question of providing a complete classification of all the homogeneous structures of

various kinds arises.
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1.1.2. The finite case. As far as finite homogeneous structures are concerned, there is a

completely general classification theory due to Lachlan which provides a classification by finitely

many natural invariants in all cases in which the structures under consideration are equipped

with finitely many relations and no functions. An exposition of this theory with substantial

simplifications is found in [KL]. Lachlan’s theory relies on the classification of the finite simple

groups in what appears to be an essential way, though in the most common cases, where all

relations are binary, this can be avoided [SL]. It should be said that if one is interested in gen-

erating completely explicit solutions to classification problems for finite homogeneous structures

this theory does not provide a very practical method in the present state of knowledge, and more

limited but efficient approaches have been used in special cases [Sh, Ga, GK, L?, L?].

In Lachlan’s classification certain infinite examples are also captured as limits of finite struc-

tures, and Lachlan has shown that his classification covers exactly the homogeneous structures

which are stable in Shelah’s sense. In particular there are only countably many homogeneous

stable structures for finite relational languages. (Here we are counting the isomorphism types of

countable structures.)

1.2. CLASSIFICATION

1.2.1. The classification problem. When we consider the problem of classifying homogeneous

structures in general, we run immediately into the following problem: there are 2ℵ0 homogeneous

directed graphs [He, Pe]. What then can we mean by a classification of an uncountable family of

structures? As far as the particular case of directed graphs is concerned, I think the description

of homogeneous directed graphs given below is a convincing classification. In the general case I

find Lachlan’s proposed criterion convincing. This makes use of Fraissé’s theory of amalgama-

tion classes. This theory will be reviewed in more detail below, but for our present purpose it

suffices to say that each (countable) homogeneous structure is determined up to isomorphism by

the isomorphism types of its finite substructures. Accordingly if K is a class of homogeneous

structures then it is natural to study the entailment relation A =⇒K B between two finite sets

A,B of finite structures defined by the condition:

Any homogeneous structure embedding all structures in A also embeds some structure in B.

[Embedding signifies: embedding as an induced substructure.]

(The most striking case is that in which B contains only one structure. ) Typically K will be

taken to consist of all the countable homogeneous structures in some natural and fixed category,

and we will drop the subscript K from the notation.

We will call a collection K of homogeneous structures classifiable if the relation =⇒K is de-

cidable. There is no direct relation between the countability of K and its classifiability in this

sense. In particular the class of homogeneous directed graphs is classifiable in this sense, but

uncountable.

1.2.2. Classification technique. There is no general theory of homogeneous relational struc-

tures beyond Lachlan’s theory for the stable case, but Lachlan and Woodrow have developed

techniques which apply in some quite special cases. These techniques depend heavily on Fraissé’s

theory of amalgamation classes. They are best understood in the context of homogeneous tour-
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naments, which I reworked in [Ch], incorporating some technical improvements I found while

working on the case of directed graphs. The classification of homogeneous tournaments is now

quite short, but in spite of technical improvements the classification of the homogeneous directed

graphs is quite long and will be presented in the last four chapters of an AMS Memoir which

should be in final form shortly.

1.3. CONTENTS

What I propose to do here is to review the Fraissé theory, the ideas developed by Lachlan and

Woodrow, and the application to the classification of homogeneous tournaments, and to sketch

briefly the adaptation of these methods to the case of directed graphs. Finally, there are a number

of problems about homogeneous directed graphs which are not settled by the classification, but

which can be reformulated in purely combinatorial terms as a result of the classification, and

hence are now ripe for attack. One such problem is the determination of all the reducts of

each homogeneous directed graph up to interdefinability, which presumably must wait (though

perhaps not very long) on the further development of the techniques described by Simon Thomas

in his article.

1.3.1. A decision problem. Another quite curious problem is the determination of the

“finitely constrained” classes of directed graphs which contain only countably many homogeneous

members. Typical examples of such classes would be the class of tournaments and the class of

partial orders, both of which were given explicit classifications prior to the treatment of the

general case – in fact, these two classifications are invoked at appropriate points in the treatment

of the general case. This problem will lead us directly into the study of well quasi-ordered families

of tournaments and the general theory of well quasi-orderings. At the end I will summarize the

results of my student B. Latka on this problem.

1.3.2. Pseudofinite structures. Hrushovski’s article describes the extension of Lachlan’s

theory in a quite distinct direction, remaining in the context of finite structures and weakening

the homogeneity condition. The resulting theory is much closer in spirit to Lachlan’s original

theory (and considerably less anecdotal in spirit).

2. Amalgamation classes

2.1. FRAISSÉ’S THEORY

2.1.1. Fraissé’s correspondence. It is fairly clear by a back-and-forth argument that a

countable homogeneous structure is determined up to isomorphism by the isomorphism types of

its finite substructures. Thus there is a bijective correspondence between homogeneous structures

Γ and certain classes A of finite structures. Fraissé observed that the corresponding classes A
can be characterized intrinsically by the obvious properties of closure under isomorphism and
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downward, together with joint embedding (any two members of A embed jointly in a third),

and one further property – the amalgamation property – which captures the essence of the

homogeneity condition.

2.1.2. Definition. The class A has the amalgamation property if for any structures

A0, A1, A2 ∈ A and any embeddings fi : A0 −→ Ai (i = 1, 2) there is a structure A ∈ A
and there are embeddings gi : Ai −→ A with g2f2 = g1f1.

For example, a dense linear ordering without endpoints is the homogeneous tournament asso-

ciated with the class of finite transitive tournaments.

2.1.3. Application: Many models. Fraissé’s correspondence can be used to good effect both

to generate new examples of homogeneous structures, and to prove classification theorems. For

example, following Henson, we will now use it to produce 2ℵ0 countable homogeneous directed

graphs. (Our directed graphs have at most one oriented edge between any pair of vertices, and

no loops.)

2.1.4. Construction. Let T be a class of tournaments, and let A(T ) be the class of directed

graphs H containing no tournaments other than those which embed in some element of T . Then

A(T ) is an amalgamation class, and the corresponding countable homogeneous structure will be

denoted Γ(T ). Thus a finite tournament embeds in Γ(T ) if and only if it embeds in some element

of T .

Now let Tn be the tournament obtained from a linear ordering (transitive tournament) of

length n by reversing the edges between successive vertices, as well as the edge from the first

to last element. The collection (Tn : n ≥ 6) forms an antichain, or in other words: there is no

embedding of Tm in Tn for m 6= n. To see this, examine the edges in Tn which belong to two

distinct oriented 3-cycles in Tn; call these edges 2-edges. If we consider the 2-edges momentarily

without their orientation, we find that Tn contains a unique circuit of 2-edges, of length n − 2.

Hence these tournaments form an antichain. Accordingly, if T = (Tn : n ∈ X) with X a set of

integers greater than 5, then:

X = {n : Tn embeds in Γ(T )}.

Thus we have produced 2ℵ0 homogeneous directed graphs Γ(T ).

Looking ahead, we should point out that according to our classification of the homogeneous

directed graphs, if one omits the graphs of the form Γ(T ) described above – which may be

manufactured with total freedom – then it turns out that only countably many other countable

homogeneous directed graphs exist.

2.1.5. Application: Classification. An early use of Fraissé’s correspondence to limit the

possibilities, rather than to produce new examples, is found in Woodrow’s [Wo]. Here triangle-

free homogeneous graphs are classified, and the triangle-freeness is used heavily to control the

outcome of various amalgamation problems. I found it useful to proceed in an analogous fashion

in the case of homogeneous directed graphs omitting In for some n, where In is an independent

set of n vertices, that is an edgeless directed graph on n vertices. The idea here is to study
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the amalgamation class “generated” by a finite set of graphs. More exactly, one studies the

entailment relation =⇒ introduced above. (This can easily be redefined without mentioning

homogeneity in terms of the consequences of a series of attempted amalgamations). In general

the set of “consequences” of a finite set A of finite structures is not itself an amalgamation class,

but on the other hand many interesting amalgamation classes can be usefully characterized in

this manner as the set of consequences of a suitable finite set A.

2.2. THE METHODS OF LACHLAN AND WOODROW

In [LW] a new idea enters the picture which makes more refined use of amalgamation classes.

Consider the generic undirected graph Γn omitting the complete graph Kn, by which we mean

the homogeneous graph associated to the amalgamation class A(Kn−1) of all graphs which do not

embed Kn. This is the “typical” homogeneous graph, and the main step in the classification of all

homogeneous graphs is the characterization of the class A(Kn−1) as the smallest amalgamation

class containg Kn−1 and two other small graphs which we will call A and B here. I am now going

to deform the idea of [LW] rather badly, in a way that seems to me to preserve the essential idea.

If A is an amalgamation class containg Kn−1, A, and B, let A∗ be the class of graphs H ∈ A
such that for any extension H+ of H by a single additional vertex, if H+ does not contain Kn

then H+ is again in A. Consider the following statement:

If A is an amalgamation class containing Kn−1, A, and B, then so is A∗. (∗)

Now it is fairly easy to see that (∗) is equivalent to the result that we are in any case aiming at,

namely that any such amalgamation class A contains all graphs that do not contain Kn. In the

first place, the assertion (∗) is a special case of this result. Conversely, it is not hard to see that

given (∗), our main result follows by “undergraduate induction” (I refer to the kind of argument

which normally involves confusion on the part of the author as to which value of k is under

consideration). Indeed, we may prove by induction on k that any graph of order k omitting Kn

is in any amalgamation class A containing Kn−1, A, and B. For the base step we take k = 1, or

even k = 0. For the inductive step, if |H| = k + 1 we remove a vertex, getting H0 of order k. By

induction H0 is in A∗, hence H = H+
0 is in A, and the proof is complete.

There is very little difficulty in checking that Kn−1, A, B satisfy the requirement for mem-

bership in A∗, but unfortunately there is no obvious way to prove that the class A∗ is again an

amalgamation class. One responds to this difficulty by changing the definition of A∗ so that with

the new defintion it is obviously an amalgamation class; one then must work harder to verify

that certain specific graphs also satisfy the new definition. The final inductive argument remains

exactly as above.

I will not give any more of the details relating to the case of undirected graphs. Instead I

prefer to pass directly to the case of tournaments, which was treated by Lachlan in [L], because in

this case a second idea is introduced on top of this “cheap induction” argument using associated

amalgamation classes.

3. Homogeneous tournaments
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3.1. THE CLASSIFICATION

There are five homogeneous tournaments, namely I1 with one vertex, C3 the oriented 3-cycle,

Q the rational order, Q∗ the dense local order, and T∞ the random tournament. We will describe

the last two in more detail.

3.1.1. Notation. If T is a tournament, we say that a vertex a dominates a vertex b if the edge

between them is oriented toward b, and we write ′a and a′ for the sets of vertices dominating or

dominated by a, respectively. A tournament is called a local order if for each vertex a, the induced

tournaments on a′ and ′a are linear orders. The class of finite local orders is an amalgamation

class and the corresponding homogeneous tournament is called the dense local order. It is rather

easy to check that the first four tournaments on our list are exactly the homogeneous local orders.

The last tournament on our list, the random tournament, is the homogeneous tournament

corresponding to the amalgamation class of all finite tournaments. The classification of the

homogeneous tournaments amounts to the following:

3.1.2. Theorem. A homogeneous tournament which is not a local order embeds all finite

tournaments.

We may rephrase this at once in terms of amalgamation classes. Let [I1, C3] denote the tour-

nament consisting of one vertex dominating an oriented 3-cycle. The local orders are the tourna-

ments omitting [I1, C3] and its dual [C3, I1]. Taking this duality into account, the classification

theorem becomes:

3.1.3. Theorem. If A is an amalgamation class of tournaments and [I1, C3] ∈ A, then all

finite tournaments are in A.

3.2. THE PROOF

The proof can be carried out for the most part using relatively general principles. The out-

standing item of specific information required is the following:

3.2.1. Lemma. If A is an amalgamation class of tournaments and [I1, C3] is in A, then

[C3, I1] is in A.

This can of course be proved by exhibiting some amalgamation diagrams. One can also argue

as follows. With some effort it can be checked that a tournament which omits [C3, I1] has the

form [L, S] where L is a linear order, S is a local order embedding C3, and as the notation

suggests, every vertex in L dominates every vertex in S. If such a tournament is homogeneous it

clearly reduces either to L or to S, and hence omits [I1, C3] as well.

Now we may prepare our cheap induction argument as follows.

3.2.2. Definition. Let A be an amalgamation class of tournaments. Then A∗ =:

{H ∈ A : Any linear extension of H lies in A},
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where a linear extension of H is a tournament H∪L with the induced subtournament on L linear

(i.e., transitive).

What we need is then:

3.2.3. Proposition. Let A be an amalgamation class of tournaments containing [I1, C3].

Then:

1. A∗ is an amalgamation class.

2. A∗ contains [I1, C3].

If this proposition is granted, our rather silly inductive argument succeeds. Furthermore,

the first claim is purely formal. In brief, if A0, A1, A2, f1, f2 are the data for an amalgamation

problem in A∗ and we list the (finitely many) possible solutions Bi to this problem, then the

assumption that no Bi is in A∗ quickly produces a contradiction, as each Bi would then have a

linear extension Bi∪Li lying outside A, and after gluing the Li together into one long linear order

L, we would find that A0∪L,A1∪L,A2∪L with the natural embeddings define an amalgamation

problem in A which has no solution in A!

This very formal analysis has reduced the classification problem to the following:

3.2.4. Lemma. If A is an amalgamation class of tournaments containing [I1, C3] and H is a

finite linear extension of [I1, C3], then H ∈ A.

The major innovation in [La] comes at this point. Using Ramsey’s theorem, Lachlan reduces

the preceding lemma to one of the following form (I use a variant of his original version). We

will use the notation L[C3] for the composition of a linear tournament L with the tournament

C3, that is a series of copies of C3 with each copy dominating later ones.

3.2.5. Lemma. If A is an amalgamation class of tournaments containing [I1, C3] and H is

an extension of a tournament of the form L[C3] with L finite and linear by a single vertex, then

H ∈ A.

The main point here is that L[C3] contains a potentially large number of disjoint copies of

[I1, C3]. The connection between the two versions of the lemma is provided by Ramsey’s theorem

and an explicit amalgamation argument. In addition to [La], where the argument is presented

with all details, a rather detailed sketch of the argument is given in [Ch].

3.3. THE FINAL STAGE OF THE PROOF.

It should be said that a third idea comes into play at this point in the argument. The foregoing

lemma is quite concrete in its content, apart from our total lack of understanding as to how a

certain vertex of H sits over the others. It turns out that this Lemma can easily be proved by

induction if we set it up properly. In fact the summary up to this point seems to cover the main

ideas adequately, but this final point is rather important in practice and is really the main issue

that really requires attention when one is working out these proofs. Accordingly we will go into
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a little more detail concerning the proof of the last lemma.

In the first place, having gotten so much mileage out of the “amalgamation class” viewpoint, we

find that it is now useful to shift our viewpoint back from amalgamation classes to homogeneous

tournaments. So we translate the last lemma back to the context of homogeneity, getting:

3.3.1. Lemma. Let Γ be a homogeneous tournament embedding [I1, C3]. Let H be an

extension of L[C3] by a single vertex v, with L finite and linear. Then H embeds in Γ.

In this form the proof proceeds by induction on the length of L. Let C be the first copy of

C3 in L[C3], and let p be the type of the vertex v over C, that is p consists of a specification,

for each vertex of C, as to whether v is to dominate or be dominated by that vertex. Let pC be

the set of vertices in Γ−C which have this same type p over C, and let C ′ be the set of vertices

in Γ dominated by all vertices of C. (The possibility pC = C ′ turns out to be illusory after one

makes the modifications alluded to below.) We consider the structure T = (′C,C ′) consisting of

two tournaments together with some oriented edges connecting them. A structure of this type

will be called a 2-tournament. To embed H into Γ, it is sufficient to embed the 2-tournament

H = ({v}, L0[C3]) into T, where L0 is L with its first vertex removed, and with v relating to

L0[C3] in H as it does in H.

3.3.2. A shift of category. Unfortunately as we began with tournaments and we are now

working in a new category, the category of 2-tournaments, even though L0 is shorter than L

the induction fails. However if we start over, and rephrase our lemma in terms of homogeneous

2-tournaments (thereby strengthening it a little), then the indicated induction succeeds. To carry

this out involves writing down (and proving) some specific properties of the 2-tournament T. In

[Ch] I introduce the notion of an ample 2-tournament at this point and carry out the appropriate

inductive proof in a couple of easy pages.

4. Some homogeneous directed graphs

It is always more pleasant if a classification project turns up a few new examples along the

way. I gave a catalog of the known homogeneous directed graphs in 1983, including one slightly

odd one that turned up in the process of making that list. Much later (Summer 1988) I found

one more, which turned out to be the last. This last example may perhaps be called the dense

local partial order, by analogy with the dense local order.

4.1. EXAMPLES

4.1.1. The dense local order. The dense local order may be realized by partitioning the dense

linear order Q into two dense sets Q0, Q1 and reversing the edges between Q0, Q1. This may also

be described as follows: identify the two possible orientations of an edge with the integers modulo

2, and shift the orientations between Qi, Qj by j − i. There is another homogeneous directed

graph that can be manufactured in a very similar way by partitioning Q into three dense sets Qi
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labelled by the integers modulo 3, and identifying the two possible orientations of an edge with

the numbers ±1, while 0 represents the absence of an edge: if we shift the edges between Qi and

Qj by j − i we get a directed graph that may be pictured as a circle along which edges point up

to 1/3 of the way around in the positive (say, counterclockwise) direction.

4.1.2. The dense local partial order. A similar approach starting with the generic partial

order P produces another homogeneous directed graphs. We partition P into three dense subsets

Pi indexed by the integers modulo 3, we identify the three binary relations holding in P with the

integers modulo 3 as above, and we shift the relations between Pi and Pj by j− i. The resulting

homogeneous directed graph is rather hard to visualize and I would not claim to grasp it.

In any case, this is the most subtle example of a homogeneous directed graph, and it is not

too far removed from a linear order.

5. The classification argument

As I have said, the classification of all homogeneous directed graphs involves a particularly

long and detailed analysis. I will sketch the argument briefly here.

After disposing of the finite and imprimitive cases, it seems necessary to divide the primitive

infinite case in two, according as our homogeneous directed graph Γ does or does not embed I∞,

an infinite set of independent vertices.

5.1. THE FIRST CASE

If Γ does not contain I∞, then in fact it omits In for some n. If n = 2 we are of course dealing

with tournaments. For any finite value of n the argument simply generalizes the argument for

tournaments, and indeed this more general argument was the direct source for the presentation

of the case of tournaments in [Ch]. One simplifying factor in the case of directed graphs omitting

In is that any application of Ramsey’s theorem to a sufficiently large set of vertices inevitably

produces a long linear order, and for this reason the argument stays fairly close to the model

argument given for tournaments.

5.2. THE SECOND CASE

The study of homogeneous directed graphs embedding I∞ seems harder. In spirit the situation

is rather similar to the classification of homogeneous undirected graphs by Lachlan and Woodrow,

but they found a trick exploiting the symmetry of the relations in an essential way. I use an

argument which is much closer to the analysis of homogeneous tournaments. This argument can

also be used for undirected graphs, but is harder than the one used by Lachlan and Woodrow in

that case. I will go into this case in substantially more detail.

5.2.1. Formulation in terms of amalgamation classes. Let Γ be a homogeneous directed graph

embedding I∞, and let T be the set of tournaments embedding in Γ. Let A be the directed graph

consisting of the disjoint union of an isolated vertex and an oriented path of length 2 (order 3),
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and define A(T ) as the set:

{A} ∪ {In : all n} ∪ T .

Let Γ(T ) be the homogeneous directed graph associated with the amalgamation class A(T ). Our

problem is to show that if Γ embeds A as well, then Γ ' Γ(T ); if Γ instead omits A then we

easily fall back into one of a small number of known exceptional cases. In terms of amalgamation

classes our goal has become:

5.2.2. Theorem. Let A be an amalgamation class of finite directed graphs with A(T ) ⊆ A.

Then A contains every finite directed graph H such that every subtournament of H embeds in

a tournament in T .

This will be proved for finite sets T , from which the general case follows instantly. The

advantage of working with finite sets is that we may proceed by induction on the size n of the

largest element of T , as well as on the number of nonisomorphic tournaments of this maximal

size in T .

5.2.3. The class A∗. Just as in the case of tournaments, we will introduce an auxiliary

amalgamation class A∗, but there is a small difference at this point. In our earlier treatment we

made use of linear tournaments, but now we may make a similar definition using either linear

tournaments or independent sets of vertices In. We will have to consider both possibilities, since

we at some point will have to invoke Ramsey’s theorem, and we simply cannot predict in advance

which of the two configurations will be produced. In spite of this ambiguity, much of the proof

goes as in the case of tournaments until we arrive at the relatively concrete stage corresponding

to our final lemma on 2-tournaments, itself proved by an inductive argument. At this stage we

require a similar lemma on homogeneous 2-digraphs, which we will now state explicitly.

5.2.4. Ample 2-directed graphs. A 2-digraph H = (Γ1,Γ2) will be called ample if it

embeds the specific directed graph A introduced above in its second component Γ2, and if every

possible configuration of the form ({v}, In) embeds in H. With the class of finite tournaments

T and the 2-directed graph H fixed, a configuration ({v}, H) will be called restricted if for every

subtournament T of H we have: T embeds in some element of T , and ({v}, T ) embeds in H.

5.2.5. Lemma T . Let T be a finite set of finite tournaments and let H be an ample

homogeneous 2-digraph. Then any restricted configuration ({v}, H) embeds in H.

Now the point is that both this lemma and the main result must be proved simultaneously by

induction over T . The order of steps is as follows. First Lemma T is proved for configurations

in which H is a disjoint union of tournaments and oriented paths of length 2. This provides the

key step to complete the main result for T . Then using the main result for T , the general case

of Lemma T follows, and we are ready to proceed to a new T .

6. Decision problems
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6.1. CLASSIFICATION PROBLEMS

With the classification of the directed graphs in hand we can consider various special cases. In

general it is natural to consider finitely constrained classes of directed graphs, in which we study

all the directed graphs which embed all directed graphs in one finite set A and omit all directed

graphs in a second finite set B. Typically A is empty, though one might for example put I2 in

A. In particular the classification of homogeneous partial orders [Sch] falls into this framework.

6.1.1. Three problems. Let K be a finitely constrained class of directed graphs. Our

classification result for directed graphs specializes directly to K. Accordingly one may well

expect the following natural problems to become trivial:

Are there any homogeneous directed graphs in K? (A)

Are there infinitely many homogeneous directed graphs in K? (B)

Are there uncountably many homogeneous directed graphs in K? (C)

We also have Lachlan’s original question: is the entailment relation =⇒ decidable for finite

structures in K? Our classification immediately yields a positive answer to this question, as any

real classification must, and problem (A) is a special case of this.

6.1.2. Problem B. Problem (B) is a little less trivial. If some negative constraint H (H ∈ B)

is linear, then all but finitely many of the homogeneous directed graphs of the form Γ(T ) are

excluded by this constraint. This immediately reduces problem (B) to a manageable special case.

If on the other hand the negative constraints H ∈ B all involve C3, then (B) is settled: there are

indeed infinitely many homogeneous structures in K, generated by linear tournaments of different

sizes. So in either case (B) is settled quickly.

6.1.3. Problem C. Problem (C) is open, but can be rephrased in purely combinatorial

terms. In the first place, a direct application of the classification theorem reduces the problem

to the very special case in which there are no positive constraints, and the set B of negative

constraints consists exclusively of tournaments. In this case we consider the class TB of all finite

tournaments which contain no member of B. If TB contains no infinite antichain (with respect to

embeddability), then TB is said to be well quasi-ordered, and B is said to be tight – that is, B is

a tight constraint. Our special case of problem (C) is equivalent to the problem of determining

whether TB is well quasi-ordered.

It is certainly not out of the question that such a decision problem could turn out to unde-

cidable, either as stated or perhaps in a somewhat more general formulation for slightly richer

combinatorial structures. However there is no obvious encoding to show this.

6.2. RESULTS ON PROBLEM (C)

The known results in this area, due to my student B. Latka, all concern the classes T{B}
determined by just one negative constraint. She has shown that the problem is decidable in

this case, and has also given a very simple decision procedure – the latter being much harder to
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obtain, as it involves the explicit solution of a number of critical cases. The soft approach to

decidability does not seem to work in the context of more than one constraint.

Latka shows that all sufficiently large nonlinear tournaments constitute loose constraints,

which certainly yields the decidability result. She then gives an explicit (and very short) list of

the exceptions; this latter information would seem to be a prerequisite for a useful analysis of

the case of two constraints, in our present state of knowledge.

6.2.1. Soft arguments. To get Latka’s first, comparatively soft result, one first exhibits

two infinite antichains of finite tournaments which serve to show that a number of specific tour-

naments are loose. Let [L2, C3] and [C3, L2] be respectively tournaments in which two vertices

dominate or are dominated by a 3-cycle C3, and let C3[L1, L1, L4] be a tournament in which one

vertex of C3 has been replaced by a linear tournament of length 4. One of Latka’s antichains, a

modification of a linear order in the spirit of Henson’s example, is made up of tournaments omit-

ting C3[L1, L1, L4], while the other is made up of tournaments omitting [L2, C3] and [C3, L2].

On the other hand every sufficiently large nonlinear tournament contains one of these three

tournaments, by the pigeon-hole principle.

6.2.2. Hard arguments. A closer look at the information afforded by Latka’s two antichains

reveals that every nonlinear tournament on at least seven vertices constitutes a loose constraint,

and that among non-linear tournaments for which the problem is not settled by these antichains,

there are only two maximal ones, of order 5 and 6 respectively. Let N5 be the tournament

obtained from the linear tournament of order 5 by reversing the arrows representing the successor

relation, and let C+ = [L1, C3[L1, L1, L3]] be the tournament in which one vertex dominates the

tournament derived from C3 by replacing one vertex by a linear tournament of order 3. Latka

completes the analysis of the case of a single constraint by showing that tournaments omitting

N5 or C+ admit a structure theorem of a type that allows us to apply Kruskal’s Tree Theorem

to conclude that the class is well quasi-ordered. (It should however be noted that the analysis of

the irreducible tournaments omitting N5 is still being checked.) In the case of N5 the full Kruskal

theorem is needed, basically because the class is closed under composition, while in the case of

C+ Kruskal’s theorem for trees of bounded height – which is essentially the same as Higman’s

lemma for finite words in a well quasi-ordered alphabet – is adequate.

Thus in a certain precise sense, this completes the classification of all singly constrained classes

of finite tournaments which admit a structure theorem.

7. Whither?

7.1. REDUCTS

I have mentioned the work of Simon Thomas and Jim Bennett on reducts of homogeneous

structures, and Hrushovski’s work extending Lachlan’s theory, both presumably well documented

in this volume.
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7.2. 0-1 LAWS

Another interesting line is the study of 0-1 laws for probabilities in spaces consisting of the

labelled structures in a finitely constrained amalgamation class. The very striking results of

Kolaitis, Prömel, and Rothschild on the case of finite undirected graphs omitting a fixed Kn+1

have not been generalized to the directed case, and perhaps unexpectedly involve new difficul-

ties. Consider the case n = 2 (treated earlier in [EK]): a random finite undirected graph with no

triangles is bipartite, with probability approaching 1 as the number of vertices goes to infinity.

The directed version of this result would apply to directed graphs omitting one of the two tour-

naments L3, C3 of order 3. For directed graphs omitting L3, a similar result may hold, but not

with the same proof. For directed graphs omitting C3 the analogous statement is clearly false:

there are more graphs of a given size obtained from a linear tournament by omitting some edges

(as in the Albert-Frieze model [1] for random partial orders) than there are bipartite graphs. So

all of this remains quite mysterious.

7.3. THE FINITE MODEL PROBLEM

A somewhat related problem is the finite model problem. We know that the random (or

generic) undirected graph has the finite model property: any first order property of this graph is

true of some (actually, most) finite graphs. The analogous question for the generic graph omitting

Kn+1 is open, even for n = 2. By the 0-1 law, most finite triangle-free graphs contain no cycle

of length 5, and are thus very different from the generic infinite triangle-free graph; but it is

possible that this graph has (a few) good finite approximations. The most successful exploration

of this case that I know of is due to Michael Albert (unpublished), but is still in its early stages.

7.4. OTHER CLASSIFICATION PROBLEMS

In principle the methods used to classify homogeneous graphs apply to any finite binary

language. In practice these methods are quite cumbersome and appear to be near the point of

collapsing under their own weight. At the same time the actual classification is strikingly simple:

one essentially has the directed graphs corresponding to the most obvious amalgamations classes

(Γ(T ) and Γn) and a handful of exceptions, finite, imprimitive, or linked to partial orders. It

remains to be seen whether our classification techniques break down at the point where radically

new examples appear.
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