
Linear Algebra Theory: Explanations

Facts
Refer to the review sheet for a list of 20 important theoretical facts. Here, we explain items 1,

2, 5, 8, 14, 17, and 19.

1. The rank of a matrix is equal to the rank of the transpose.
This is a deep fact.
We know that the rank of a matrix A gives the dimension of both its row space and its column

space! (This takes a lot of theory.)
Applying this to AT , and noticing that the row and column spaces of AT are the column and

row spaces of A, we get the result.
2. The rank of a matrix gives the dimension of both its row space and its

column space.
There are two different claims here.
(i) Row space: this is relatively easy. Gaussian elimination does not change the row space of a

matrix. Hence we may suppose the matrix is in row echelon form, in which case the rank (number
of pivots) is the same as the number of nonzero rows, and since these are linearly independent they
form a basis for the row space.

Column space: much trickier. Gaussian elimination does change the column space, but it does
not change the null space, and the null space gives the linear relations among the columns. Now
the pivot columns in the row echelon form of the matrix form a basis for its column space, so the
pivot columns in the original matrix form a basis for the original column space.

A further comment: we use the column space algorithm to test linear independence and to find
relationships among linearly independent vectors. Simply make the given fectors the columns of a
matrix, and find the pivot columns. Any columns which are not pivot columns can be expressed
as linear combinations of the pivot columns.
5. For any subspace V of Rn we have dim (V ) + dim (V ⊥) = n.

For this you need to think about the matrix A whose columns consist of a basis for V . If V
is d-dimensional then this will be a matrix of shape n × d and rank d, and the transpose AT will
have shape d× n and rank d. Then V ⊥ is the null space of AT , and its dimension is the nullity of
AT , which will be n− d.

So now our claim is n = d+ (n− d), which is correct.
8. A diagonalizable matrix has all of its eigenvalues real.

A diagonalizable matrix is similar to a diagonal matrix, and therefore has the same eigenvalues
as the diagonal matrix. But the eigenvalues of the diagonal matrix are its diagonal entries, which
are real numbers.
14. The set of eigenvectors for a square matrix A corresponding to a particular

eigenvalue, with the zero vector included, forms a subspace.
Short version:

the eigenspace (with the zero vector included) is the null space of A− λI, and the null space
is a standard example of a subspace.
Detailed version:

If Au = λu and Av = λv then

A(u + v) = Au +Av = λu + λv = λ(u + v)

and thus the eigenspace is closed under addition.
Similarly if c ∈ R then A(cu) = cAu = cλu = λ(cu), and the eigenspace is closed under scalar

multiplication.
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17. A set of homogeneous linear equations involving more variables than
equations must have a nonzero solution.

Elementary version:
The coefficient matrix is m×n with m < n, so there are at most m basic variables and at least

n −m free variables. So there are in fact some free variables, and by setting the free variables to
nonzero values and solving for the basic variables, we can find nonzero solutions.
Advanced version:

If we have m equations in n unknowns, then the homogeneous system describes the orthogonal
complement in Rn of a space V spanned by m vectors. So the dimension of V is at most m, and
the dimension of V ⊥ is at least n −m, which is greater than 0. So V ⊥ contains nonzero vectors,
since its dimension is positive.
19. Similar matrices have the same characteristic polynomial, the same

eigenvalues, and the same algebraic multiplicities.
First choose notation: the similar matrices are called A and B, and they are related by

B = P−1AP with P invertible.
Now compute the characteristic polynomials:

det(B−λI) = det(P−1AP−λI) = det(P−1(A−λI)P ) = det(P )−1 det(A−λI) det(P ) = det(A−λI)

So A and B have the same characteristic polynomial.
If they have the same characteristic polynomial, then they have the same eigenvalues and

algebraic multiplicities, since these just depend on the factorization of that polynomial.

Food for thought
Prove tr (AB) = tr (BA)

You have to make the calculation. Letting A and B be [aij ] and [bkl], one can show that
the trace of the product AB is

∑
i,j aijbji. Then the trace of the product BA is given by the

corresponding formula
∑
j,i bjiaij and these are clearly the same. (If this is unreadable, just work

through the 2× 2 case for yourself.)

What are the eigenvalues of a projection matrix, and what are their algebraic and
geometric multiplicities? Is every projection matrix diagonalizeable?

If we project orthogonally onto V , then the vectors in V are eigenvectors with eigenvalue 1,
and the vectors in V ⊥ are eigenvectors with eigenvalue 0. So the geometric multiplicities are the
dimensions of V and V ⊥, the matrix is diagonalizable, and consequently the algebraic multiplicities
are the same. (And the characteristic polynomial must be (1 − λ)d(−λ)d

′
where d = dimV and

d′ = dimV ⊥.)
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