
Linear Algebra: Final Review

Main Algorithms

1. Test for linear independence
2. When vectors are linearly dependent, express one of them as a linear combination of the others.
3. Basis for row space, column space, null space, eigenspace, orthogonal complement.
4. Determination of eigenvalues.
5. L,U -decomposition and its application to the solution of linear systems
6. Matrix inversion
7. Computation of determinant via a combination of row and column operations, cofactor expan-
sions, and explicit formulas.
8. Computation of eigenvalues.
9. Diagonalization, powers
10. Projection on a line
11. Gram-Schmidt orthogonalization procedure
12. Projection on a subspace
13. Least squares, data-fitting.
14. Determination of the type of a conic section.
While one should bear in mind the applications to differential equations, I will not be testing this
material, which is another application of the idea of diagonalization.

Theory

Concepts
You should able to give reasonably precise and explicit definitions or explanations of each of the
following, with one exception: we never gave a proper definition of the determinant, so the best
you can do in this case is explain in general terms what it is, and what it is good for.

matrix multiplication, inverse, power, matrix times vector, rank, nullity, row echelon form
elementary row operation, Gaussian elimination
column space, row space
linear combination, independence, span, subspace, basis, dimension
determinant, trace
eigenvalue, eigenvector, characteristic polynomial, algebraic multiplicity, geometric multiplicity
symmetric matrix, diagonalizable matrix, orthogonal matrix, rotation matrix, invertible matrix,
similar matrices
dot product, orthogonal vectors, orthogonal set of vectors, orthogonal basis, orthogonal comple-
ment, orthogonal matrix,
projection onto a line, a subspace

We might also add: “linear transformation”—but this is not, officially, a part of the course.
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Facts
I have put up a fairly exhaustive summary of the theory elsewhere. What follows below is a list of a
substantial number of theoretical points for which it is possible to give reasonably straightforward
and brief explanations. Assuming you have all the essential algorithms under control, and can
explain the terms listed above, the next stage is to consider how one knows each of the following.
Some of the apparently simple facts lie fairly deep, while others that may seem sophisticated follow
directly from the definitions.
1. The rank of a matrix is equal to the rank of the transpose.
2. The rank of a matrix gives the dimension of both the row space and the column space.
3. The nullity of a matrix gives the dimension of its null space;
4. If A is a matrix and V is its column space, then the dimension of V ⊥ is the nullity of AT .
5. For any subspace V of Rn we have dim (V ) + dim (V ⊥) = n.
6. Eigenvectors of a symmetric matrix which correspond to distinct eigenvalues are orthogonal.
7. An orthogonal set of nonzero vectors must be linearly independent.
8. A diagonalizable matrix has all of its eigenvalues real.
9. The sum of the algebraic multiplicities of the eigenvalues of an n× n matrix is n.
10. The product of the eigenvalues of a matrix gives its determinant.
11. If all the eigenvalues of a square matrix are real, and if the geometric multiplicity of each
eigenvalue is its algebraic multiplicity, then the matrix is diagonalizable.
12. If A is an n × n matrix and Rn has a basis consisting of eigenvectors for A, then A is similar
to a diagonal matrix.
13. If A is an invertible matrix then its determinant is nonzero.
14. The set of eigenvectors for a square matrix A corresponding to a particular eigenvalue, with
the zero vector included, forms a subspace.
15. The span of any set of vectors in Rn is a subspace.
16. The set of solutions for a system of homogeneous linear equations in n unknowns forms a
subspace of Rn.
17. A set of homogeneous linear equations involving more variables than equations must have a
nonzero solution.
18. The null space of an m× n matrix is a subspace of Rn.
19. Similar matrices have the same characteristic polynomial, the same eigenvalues, and the same
algebraic multiplicities.
20. If A,B,C are n × n matrices with both B and C similar to A, then B and C are similar to
each other.
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Examples

The standard example of a matrix which is not diagonal is
[
λ 1
0 λ

]
where one picks a value for λ;

then the algebraic multiplicity will be two and the geometric multiplicity 1. Similar, but larger,
examples would consist of the eigenvalue down the diagonal, and a sequence of 1’s just above the
diagonal.
As the zero vector is not considered an eigenvector, it provides a counterexample to some statements
which would otherwise be true. The reason for this exclusion is the following: each eigenvector is
associated to a unique eigenvalue—this would not hold for the zero vector.
For understanding Gaussian elimination at a theoretical level, one should consider matrices with

linearly dependent rows, both square and nonsquare, such as
[

1 1
1 1

]
or

 1 1
1 2
1 3

. (In the second

example, the shape of the matrix forces the rows to be linearly dependent, but the columns are
linearly independent.)
Sometimes rotation matrices or symmetric matrices provide good examples. In extreme cases
the consideration of diagonal matrices can be helpful (including the identity matrix and the zero
matrix)—though these can also be misleading.
Bear in mind the failure of commutativity, which can usually be illustrated by random 2×2 matrices;
this is what makes the expression PDP−1 interesting. If we had commutativity, this would just be
D.
The standard basis ē1, ē2, . . . , ēn in Rn is perhaps the best example of a basis (and the first couple
are good for thinking about the “span”). But it has special properties: this is an orthogonal basis
and the vectors are unit vectors.
Projection onto the span of ē1, ē2 in R4 is a good example of orthogonal projection. (Exercise:
write down the projection matrix, and check that it is symmetric and idempotent.)

Food for thought
Prove tr (AB) = tr (BA)
What are the eigenvalues of a projection matrix, and what are their algebraic and geometric
multiplicities? Is every projection matrix diagonalizeable?
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