
Linear Algebra: Review for second Midterm (April 14, 2003)

While emphasis on the second midterm is on algorithms, there is also some theoretical compo-
nent to the test. Be prepared to answer true/false questions, explaining why the true ones are true
and making up suitable examples to show the false ones are false. You should also be prepared to
explain the theory of eigenvalues and eigenvectors.

Topics and sample problems

1. Spaces
Basis, dimension

Problems: p. 248. 5,6

2. Matrices
Row and column spaces, nullspace.

Problems: p. 248. 7,8
Determinants, elementary row and column operations

Problems: p. 196. 14, 32

3. Eigenvalues and eigenvectors
Characteristic polynomial, eigenvalue, eigenvector, eigenspace

Problems: p. 309. 6, 7, 8, 9, 10

4. Diagonalization and powers
Diagonalization algorithm:

a. Compute the characteristic polynomial and find the roots, and their multiplicities. If any of
them are complex, stop.

b. For each eigenvalue, find a basis for the corresponding eigenspace. If the dimension of some
eigenspace is less than the algebraic multiplicity, stop.

c. Form the matrix P whose columns are the eigenvectors you found, and form the diagonal
matrix D whose diagonal entries are the corresponding eigenvalues.

d. You have P−1AP = D and A = PDP−1.
Power algorithm:

a. Diagonalize A: A = PDP−1. If the algorithm fails, stop.
b. Ak = PDkP−1.

If you need to compute Ak, you will have to invert P−1.
If, on the other hand, you need to compute Aku for a single vector u, then you only need to

compute P−1u which is a little bit easier; use Gaussian elimination to solve Px = u.
Problems: p. 309. 19, 20, 22
Exponential algorithm:

a. Diagonalize A: A = PDP−1. If the algorithm fails, stop.
b. eA = PeDP−1.

(The same remarks about inverting P apply as in the previous case.)

5. Dot product, length, projection
Problems: p. 394. 2, 3, 6, 7

6. True/False, and terminology
Problems:

p. 196. 1 f,g,h,j
p. 248. 1 c,g,i,j,l,m,p; 2 a,b,c,d,e
p. 308. 1 b,c,d,h,i,j
p. 394. 1 a,b,c,d,e
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7. General Theory
Theory of eigenvalues: Explain why each of the following is true.

1. The eigenvalues of a square matrix are the roots of its characteristic polynomial.
2. If u1, . . . ,uk are nonzero eigenvectors for the matrix A, and if the corresponding eigenvectors

are all distinct, then u1, . . . ,uk are linearly independent.
3. If P−1AP = B with A,B square and of the same size, and u is an eigenvector for B, then

Pu is an eigenvector for A.
4. If P is a matrix whose columns are eigenvectors for the matrix A, and if D is the diagonal

matrix whose diagonal entries are the corresponding eigenvalues, then AP = PD.
5. If P−1AP = B then A and B have the same characteristic polynomial.
6. If A is square, then A and AT have the same characteristic polynomial.
7. If A and B have the same characteristic polynomial then they have the same eigenvalues,

with the same algebraic multiplicities, and also have the same determinant and trace.
8. The determinant of a matrix is the product of its eigenvalues.

Theory

I. Theorem 1.9 page 75: span and linear independence
If k + 1 vectors are contained in the span of k vectors, then they are linearly dependent – as

for example, n+ 1 vectors in Rn.
II. Gaussian elimination and bases

After Gaussian elimination: the nonzero rows are a basis for the row space; the pivot columns
in the original matrix form a basis for the column space; and the solutions to the homogeneous
equation obtained by back substitution by setting each free variable in turn equal to 1 (and the
other free variables to 0) form a basis for the nullspace.
III. Eigenvalues

The eigenvalues of A are the roots of the characteristic polynomial det(A − λI). By the
Fundamental Theorem of Algebra, if one allows both complex roots and repeated roots, then there
are n of them (if the matrix is n× n).
IV. Eigenspaces

The λ-eigenspace for A is the nullspace of A− λI; this is how one determines a basis for it.
V. Diagonalization

A matrix A is diagonalizable if the equation P−1AP = D has a solution with P invertible and
D diagonal.

Here are two characterizations of diagonalizability for an n× n matrix A:
(1) The whole space Rn has a basis made up of eigenvectors for A.
(2) The eigenvalues of A are all real, and furthermore for each root its algebraic multiplicity

equals its geometric multiplicity.
VI. Dot products

u · v = uTv.
u · v is ||u||||v|| cos θ with θ the relative angle.
Two special cases: u · u = ||u||2; u · v = 0 if u ⊥ v.
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Explanations – Summarizing the book and class discussion

I. Span and linear independence
Suppose v1, . . . ,vn are in the span of u1, . . . ,um with n > m. Let A be the matrix whose

columns are the ui and B the matrix whose columns are the vi. Then the relation is B = AX with
X some m × n matrix. By part I we can solve Xc = ~0 with c nonzero. Then Bc = AXc = ~0 so
c1v1 + · · · cnvn = ~0.
II. Gaussian elimination and bases

Elementary row operations do not change the row space or nullspace.
Therefore, to get the row space or null space for a matrix, we can first put it in row echelon

form, and then it is fairly easy to see what to do.
For the column space, we must work with the original matrix. However, since the nullspace is

unchanged, and the nullspace consists of all linear relations among the columns, it follows that the
relations of linear dependence and independence in the original matrix are the same as in the row
echelon form, and therefore the pivot columns are the ones we want.
III. Eigenvalues

For λ to be an eigenvalue of A, one wants a nonzero eigenvector, in other words a solution to
(A− λI)x = ~0.

By the theory from the first part of the course, this means that the matrix A− λI should not
be invertible, and the condition for this is det(A− λI) = 0.
IV. Eigenspaces

The equations Ax = λx and (A− λI)x = ~0 are equivalent.
V. Diagonalization

The main point that one wants to check is this: if a matrix A has n real roots (with repetitions)
and if the dimension of each eigenspace is the corresponding algebraic multiplicity, then the matrix
is diagonalizable. None of this is easy.

1) One first shows that if u1,u2, . . . ,uk are eigenvectors corresponding to distinct eigenvalues,
then they are linearly independent.

2) From this it follows that if we take a basis for each eigenspace for A, we get a linearly
independent set.

Now suppose that the n× n matrix A has all of its eigenvalues real, and all its eigenspaces of
the correct dimension. Then:

3) The linearly independent set constructed at stage 2 contains n vectors, so it is a basis for
R
n.

4) If P is the matrix of eigenvectors and D is the corresponding diagonal matrix of eigenvalues,
then we have two facts:

a. AP = PD
b. P is invertible.

For (a) one shows that on both the left and the right hand sides, the product shown gives P
with each column multiplied by the corresponding eigenvalue.

For (b) one uses the fact that a matrix whose columns are linearly independent must be
invertible.
VI. Dot products

This is largely computational. One fundamental point is the following:
(Au) · v = u ·ATv. This is fundamental.
Notice that it implies that the value of the dot product is unaffected by a rotation (this fact

can be used to simplify computations).
Here’s the proof: if A is a rotation then ATA = I and hence (Au) · (Av) = u · (ATAv) = u ·v.
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