Linear algebra formulas and algorithms

Rotation Matrix: $\quad A_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

Linear systems

Consistency of $A \mathbf{x}=\mathbf{b}: \mathbf{b}$ is in the column space
$L U: U=E_{k} \cdots E_{1} A: L=E_{1}^{-1} \cdots E_{k}^{-1}$
Back and forth substitution: $L \mathbf{y}=\mathbf{b} ; U \mathbf{x}=\mathbf{y} ; L U \mathbf{x}=\mathbf{b}$
Cramer: $x_{i}=\operatorname{det}\left(B_{i}\right) / \operatorname{det}(A)$.

Matrix algebra

$$
(A B)^{-1}=B^{-1} A^{-1} \quad\left(P^{-1} D P\right)^{n}=P^{-1} D^{n} P \quad \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Inversion Algorithm: $\left[\begin{array}{ll}A & I\end{array}\right] \rightarrow\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$
Invertibility: $\operatorname{det} A \neq 0$

Basis algorithms

1. Row space: nonzero rows of row reduced form. Dimension: rank.
2. Column space: pivot columns of original matrix. Dimension: rank.
3. Null space: one basis vector per free variable: set one free variable equal to 1 , set the others equal to 0 , and solve for the basic variables. Dimension: nullity.
4. Eigenspace: Null space of $A-\lambda I$.
5. Orthogonal complement of column space: Null space of transpose.
6. Orthogonal basis: Gram-Schmidt applied to any known basis.

Eigenvalues

Roots of the characteristic polynomial
Sum: trace. Product: determinant.

Diagonalization and Power algorithms; exponential

$P^{-1} A P=D: P$ is the matrix of eigenvectors, D is the matrix of eigenvalues.
Symmetric case: $P^{T} P=1$ (use an orthogonal basis consisting of unit vectors).
$A^{n}=P D^{n} P^{-1} ; e^{A}=P e^{D} P^{-1} ; \operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}}(A)$
Conic sections: diagonalize the matrix of the quadratic form and look at the conic section corresponding to the diagonal matrix.
Dot products and Projections
$\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}$
$A \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot A^{T} \mathbf{v}$ (adjoint property)
Projection of \mathbf{v} in the direction of $\mathbf{u}: \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$
The projection matrix in this case is $\mathbf{v v}^{T} / \mathbf{v}^{T} \mathbf{v}$ (a matrix divided by a number).
Projection onto a subspace V : if you have an orthogonal basis for V, use the sum of the projections onto each basis vector; otherwise, use $P=A\left(A^{T} A\right)^{-1} A^{T}$ where the columns of A are a basis for V (laborious).
Gram-Schmidt: remove from each vector its projection onto the span of the previous vectors; use the new basis vectors to do this.
Least squares $(A \mathbf{x}=\mathbf{b})$: project \mathbf{b} into the column space of A and solve; in practice, multiply on the left by A^{T} and solve.

