Some useful formulas in and around linear algebra

Rotations:
$$A_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Values of Trigonometric functions

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Linear systems

Consistency of $A\mathbf{x} = \mathbf{b}$: **b** is in the column space Back and forth substitution: $L\mathbf{y} = \mathbf{b}$; $U\mathbf{x} = \mathbf{y}$; $LU\mathbf{x} = \mathbf{b}$ $U = E_k \cdots E_1 A$: $L = E_1^{-1} \cdots E_k^{-1}$

Matrix algebra

$$\begin{split} (AB)^{-1} &= B^{-1}A^{-1} & (P^{-1}DP)^n = P^{-1}D^nP \\ \det(AB) &= \det(A)\det(B) \\ \text{Inversion Algorithm: } [A \quad I] \to [I \quad A^{-1}] \end{split}$$

To write an invertible matrix A as a product of elementary matrices: (1) $E_k \cdots E_1 A = I$ (row reduction to reduced row echelon form); (2) $A = E_1^{-1} \cdots E_k^{-1}$. Invertibility: det $A \neq 0$

Basis algorithms

1. Row space: nonzero rows of row reduced form. Dimension: rank.

2. Column space: pivot columns of original matrix. Dimension: rank.

3. Null space: one basis vector per free variable: set one free variable equal to 1, set the others equal to 0, and solve for the basic variables. Dimension: nullity.

Eigenvalues

Characteristic polynomial: $det(A - \lambda I)$

Diagonalization and Power algorithms

 $P^{-1}AP = D$: P is the matrix of eigenvectors, D is the matrix of eigenvalues. $A^n = PD^nP^{-1}$

Dot products and Projections

 $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$ $||\mathbf{u}|| = \sqrt{\mathbf{u} \cdot \mathbf{u}}$ $A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^T \mathbf{v} \text{ (adjoint property)}$ Projection of \mathbf{v} in the direction of \mathbf{u} : $\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$