Some useful formulas in and around linear algebra

Rotations: $\quad A_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
Values of Trigonometric functions

θ	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Linear systems

Consistency of $A \mathbf{x}=\mathbf{b}: \mathbf{b}$ is in the column space
Back and forth substitution: $L \mathbf{y}=\mathbf{b} ; U \mathbf{x}=\mathbf{y} ; L U \mathbf{x}=\mathbf{b}$

$$
U=E_{k} \cdots E_{1} A: L=E_{1}^{-1} \cdots E_{k}^{-1}
$$

Matrix algebra

$$
\begin{array}{ll}
(A B)^{-1}=B^{-1} A^{-1} & \left(P^{-1} D P\right)^{n}=P^{-1} D^{n} P \\
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) &
\end{array}
$$

Inversion Algorithm: $\left[\begin{array}{ll}A & I\end{array}\right] \rightarrow\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$
To write an invertible matrix A as a product of elementary matrices:
(1) $E_{k} \cdots E_{1} A=I$ (row reduction to reduced row echelon form);
(2) $A=E_{1}^{-1} \cdots E_{k}^{-1}$.

Invertibility: $\operatorname{det} A \neq 0$

Basis algorithms

1. Row space: nonzero rows of row reduced form. Dimension: rank.
2. Column space: pivot columns of original matrix. Dimension: rank.
3. Null space: one basis vector per free variable: set one free variable equal to 1 , set the others equal to 0 , and solve for the basic variables. Dimension: nullity.

Eigenvalues

Characteristic polynomial: $\operatorname{det}(A-\lambda I)$

Diagonalization and Power algorithms

$P^{-1} A P=D: P$ is the matrix of eigenvectors, D is the matrix of eigenvalues.
$A^{n}=P D^{n} P^{-1}$

Dot products and Projections

$\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$
$\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}$
$A \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot A^{T} \mathbf{v}$ (adjoint property)
Projection of \mathbf{v} in the direction of $\mathbf{u}: \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$

