Some useful formulas in and around linear algebra

Rotations

$$
A_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Values of Trigonometric functions

θ	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Linear systems

Consistency of $A \mathbf{x}=\mathbf{b}: \mathbf{b} \in \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$.
Back and forth substitution:
$L \mathbf{y}=\mathbf{b} ; U \mathbf{x}=\mathbf{y} ; L U \mathbf{x}=\mathbf{b}$
$U=E_{k} \cdots E_{1} A: L=E_{1}^{-1} \cdots E_{k}^{-1}$
Elementary row operations: multiply by elementary matrices on the left.

Matrix algebra

$(A B)^{T}=B^{T} A^{T}$
$A \cdot\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}\right)=c_{1} A \mathbf{u}_{1}+c_{2} A \mathbf{u}_{2}$
$(A B)^{-1}=B^{-1} A^{-1}$
$\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
Inversion Algorithm: $\left[\begin{array}{ll}A & I\end{array}\right] \rightarrow\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$
To write an invertible matrix A as a product of elementary matrices: (1) $E_{k} \cdots E_{1} A=I$ (row reduction to reduced row echelon form); (2) $A=E_{1}^{-1} \cdots E_{k}^{-1}$.

Linear Correspondence Principle

Any linear relations among the columns of a matrix are unaffected by elementary row operations.

