Some useful formulas in and around linear algebra

Rotations

$$A_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Values of Trigonometric functions

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Linear systems

Consistency of $A\mathbf{x} = \mathbf{b}$: $\mathbf{b} \in \text{Span}(\mathbf{a}_1, \dots, \mathbf{a}_n)$.

Back and forth substitution: $L\mathbf{y} = \mathbf{b}; U\mathbf{x} = \mathbf{y}; LU\mathbf{x} = \mathbf{b}$ $U = E_k \cdots E_1 A: L = E_1^{-1} \cdots E_k^{-1}$

Elementary row operations: multiply by elementary matrices on the left.

Matrix algebra

 $(AB)^{T} = B^{T}A^{T}$ $A \cdot (c_{1}\mathbf{u}_{1} + c_{2}\mathbf{u}_{2}) = c_{1}A\mathbf{u}_{1} + c_{2}A\mathbf{u}_{2}$ $(AB)^{-1} = B^{-1}A^{-1}$ $(A^{T})^{-1} = (A^{-1})^{T}$

Inversion Algorithm: $\begin{bmatrix} A & I \end{bmatrix} \rightarrow \begin{bmatrix} I & A^{-1} \end{bmatrix}$

To write an invertible matrix A as a product of elementary matrices: (1) $E_k \cdots E_1 A = I$ (row reduction to reduced row echelon form); (2) $A = E_1^{-1} \cdots E_k^{-1}$.

Linear Correspondence Principle

Any linear relations among the columns of a matrix are unaffected by elementary row operations.