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Abstract
In this paper we study resonances and eigenvalues for the nonlinear constant mean curvature
equation linearized around the bubbles found by Brezis–Coron. This nonlinear equation is
also called aH-system equation. For degree one bubbles we only find resonances. For higher
degree we prove eigenvalues occur. Our goal is to eventually obtain dispersive estimates for
the wave equation associated to the linear and non-linear problem, a study of which was
initiated by Chanillo–Yung.

Keywords H-systems · Resonances · Eigenvalues · Dispersive estimates ·
Mean curvature equation

Mathematics Subject Classification (2010) 35P25 · 35L77 · 35P30

1 Introduction

Let
u : � ⊂ R

2 → R
3,

where � is a domain. We will denote vector cross products of two vectors u, v by u ∧ v.
Consider now the equation

�u = 2ux ∧ uy, u = (u1, u2, u3), (1.1)

where �u = (�u1,�u2,�u3).
If u satisfies (1.1) and in addition the Plateau conditions

|ux |2 = |uy |2, ux · uy = 0, (1.2)
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then the range of u defines a constant mean curvature surface in R
3. In this work, we shall

ignore the Plateau conditions (1.2). Equation (1.1) can be written in variational form

E(u) = 1

2

∫
�

|∇u|2 + 2

3

∫
�

u · ux ∧ uy . (1.3)

Brezis and Coron [1] and Struwe [10] studied (1.3) and itsMorse theory. Brezis and Coron [2]
classified all the finite energy solutions of (1.1). These finite energy solutions will be referred
to as bubbles in the sequel. [2] also obtained the first result for (1.1) as to how compactness
in (1.3) fails. Equation (1.1) is a conformally invariant PDE and also invariant by translation
and rotation in the target. Chanillo and Malchiodi [4] studied the Morse theory further for
(1.1) and constructed multi-bubble solutions to (1.1). We point out that the Topology of �

plays a strong role in constructing solutions. For example, a result of Wente [11], another
proof may be found in Proposition 3.1 of [4], shows that if � is simply connected, then

�u = 2ux ∧ uy, u|∂� ≡ 0 (1.4)

has only the solution u ≡ 0, while if� is an annulus, Wente constructed non-trivial solutions
to (1.4) in [11].

We now recall the classification result of [2]. Consider those solutions in allR2 satisfying,

�u = 2ux ∧ uy,

∫
R2

|∇u|2 < ∞.

Then, we have quantization, that is necessarily∫
R2

|∇u|2 = 8πm, m ∈ N, m ≥ 1,

and

u = π−1
(
P(z)

Q(z)

)
, π : S2 → R

2, z = (x, y).

π is the stereographic projection to the plane from the Riemann sphere, P(z), Q(z) are
polynomials which are holomorphic andm = max{deg P, deg Q}. Thus the degree 1 bubbles
which are basic have the form

(x, y) →
(

2x

1 + |z|2 ,
2y

1 + |z|2 ,
|z|2 − 1

|z|2 + 1

)
,

where z = x + iy, which we will abuse sometimes and think z = (x, y). Degree m bubbles,
m ≥ 2, can be written as (note these are special degree m bubbles)

(
2
zm

1 + |z|2m ,
2�zm

1 + |z|m ,
|z|2m − 1

|z|2m + 1

)
. (1.5)

In [5] the study of the wave equation corresponding to (1.1)

�u − utt = 2ux ∧ uy, u|t=0 = u0, ut |t=0 = u1 (1.6)

was initiated. The right side of (1.6) is an example of a null form. Since we are in dimension
2, with poor Strichartz estimates and lack of Huygens principle, many problems concerning
(1.6) remain unresolved. Some attempts have been made [3] to understand random data
versions of (1.6). One of the main results of [5], in the spirit of a similar result for another
conformally invariant equation, the Yamabe equation [8], is that if

‖∇u0‖22 > 8π
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which is saying that if the initial data has more energy than a degree 1 bubble, and with an
additional condition on u1, involving energy trapping, then the solution to (1.6) blows up in
finite time. Furthermore in [6], via unique continuation arguments it is proved that the blow
up is not self-similar. No refined bubbling analysis for (1.6) is known to date.

Our goal here is to take an initial step for a linearized version of (1.6) and study dispersion
and scattering like what was done in 3D for the Yamabe equation in [9]. To do so one has
to study Born expansions. To perform such expansions one needs to know if resonances and
eigenvalues exist for the linearized elliptic part. Appearance of eigenvalues in the spectrum
complicates matters.

To state our theorems, we first linearize (1.1) around a bubble u, and get

�w = 2wx ∧ uy + 2ux ∧ wy . (1.7)

We now prefer to study (1.7) on the punctured sphere S2 \ {N }, where N is the North Pole.
So we study (1.7) on R

2, equipped with the metric

4

(1 + |z|2)2 (dx2 + dy2), z = (x, y).

Equation (1.7) becomes due to a conformal change of the metric

1

ϕ
�w = 2

ϕ
(wx ∧ uy + ux ∧ wy), ϕ = 4

(1 + |z|2)2 . (1.8)

Thus the eigenvalue equation for (1.8) is

�w = 2(wx ∧ uy + ux ∧ wy) + 4λ

(1 + |z|2)2 w, (1.9)

where z = (x, y) and

�w = ∂2w

∂x2
+ ∂2w

∂ y2
.

The equation (1.9) when λ = 0 is of course

�w = 2(wx ∧ uy + ux ∧ wy). (1.10)

We also notice by integration by parts the self-adjoint property

E(v,w) = E(w, v) =
∫
R2

∇v · ∇w + 2
∫
R2

v · (wx ∧ uy + ux ∧ wy) (1.11)

for v,w ∈ C∞
0 (R2,R3). In view of (1.11) we search for solutions to (1.9), (1.10) for which

w ∈ L2(R2).

Definition 1.1 (a) We say λ is a resonance for (1.9), (1.10), if w /∈ L2(R2) and w satisfies
(1.9), (1.10).

(b) We say λ is an eigenvalue if w ∈ L2(R2) and w satisfies (1.9), (1.10).

Lastly, we shall only focus on w that is co-rotational. That is keeping in mind the expression
for the bubbles (1.5), we assume for (r , θ) polar coordinates,

w(r , θ) = ( f (r) cosmθ, f (r) sinmθ, g(r)). (1.12)

Theorem 1.2 (a) λ = 0 is a resonance for (1.10) for u a degree 1 bubble.
(b) λ = 0 is an eigenvalue for (1.9), (1.10), for u a degree m bubble of the form (1.5), m ≥ 2,

and with an eigenfunction of the form (1.12).
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Theorem 1.3 For u a degree 1 bubble, (1.9), (1.10) has no eigenfunctions of the form (1.12)
for any λ. That is there are no co-rotational eigenfunctions for any choice of λ.

We end by recording a problem.

Problem In view of Theorem 1.2, when u is a degree m bubble, m ≥ 2 we know λ = 0 is an
eigenvalue. Does (1.9) have other eigenvalues besides λ = 0, where the eigenfunctions are
co-rotational of the form (1.12), when u is a degree m bubble given by (1.5), m ≥ 2?

2 Proofs of the Results

We begin by proving Theorem 1.2.

Proof First we note that
�u = 2ux ∧ uy

is invariant under dilations, that is under the map z → δz, δ > 0, z = x + iy. We only
consider dilations as we are focused on co-rotational solutions to our linearized equation

�w = 2ux ∧ wy + 2wx ∧ uy + 4λ

(1 + |z|2)2 w, (2.1)

where u(x, y) is a bubble of degree m. Since we are examining eigenvalues and resonances
at λ = 0, we set λ = 0 in (2.1) and also

u(z) =
(

2
zm

1 + |z|2m ,
2�zm

1 + |z|2m , 1 − 2

1 + |z|2m
)

. (2.2)

Dilation of the bubble given by (2.2) yields

uδ(x, y) =
(

2δm
zm

1 + δ2m |z|2m ,
2δm�zm

1 + δ2m |z|2m , 1 − 2

1 + δ2m |z|2m
)

. (2.3)

By invariance we have
�uδ = 2uδ

x ∧ uδ
y . (2.4)

Differentiating (2.3), (2.4) in δ, and setting δ = 1, we get,

w = ∂uδ

∂δ

∣∣∣
δ=1

=
(
2m
zm(1 − |z|2m)

(1 + |z|2m)2
,
2m�zm(1 − |z|2m)

(1 + |z|2m)2
,

2m|z|2m
(1 + |z|2m)2

)
(2.5)

and
�w = 2wx ∧ uy + 2ux ∧ wy .

We see from (2.5), that there exists c1, c2 > 0 such that

|w(x, y)| ≤ c1(1 + |z|)−m

and
c2|z|−m ≤ |w(x, y)| for |z| ≥ 10.

Thus w ∈ L2(R2) for m ≥ 2, and w /∈ L2(R2) when m = 1. Hence, we conclude that
λ = 0 is an eigenvalue for the linearized problem around a bubble of degree ≥ 2, and λ = 0
is a resonance for the linearized problem when the CMC equation is linearized around a
bubble of degree one. When λ = 0 and u a degree one bubble, we will conclusively rule out
eigenvalues in the next theorem. This ends the proof. ��

We now prove Theorem 1.3.
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Proof Our first goal is to compute the ODE for the co-rotational solution for the linearized
problem, where we linearize at a degree m bubble. We will later specialize to m = 1. Since
we are considering the punctured sphere S2 \ {N }, where N is the North pole, as explained
in the introduction, our eigenvalue equation is

�w = 2wx ∧ uy + 2ux ∧ wy + 4λ

(1 + |z|2)2 w, (2.6)

where u is a degree m bubble. w being co-rotational has the form in polar coordinates (r , θ),
w(r , θ) = ( f (r) cosmθ, f (r) sinmθ, g(r)). By changing variables it is easily seen

wx ∧ uy + ux ∧ wy = 1

r
wr ∧ uθ + 1

r
ur ∧ wθ . (2.7)

Next we perform a Kelvin transformation by setting

r = 1

t
, θ → −θ

and routine computation yields that (2.7) becomes

t3(wt ∧ uθ + ut ∧ wθ). (2.8)

The Laplacian transforms to

t4
(

∂2

∂t2
+ 1

t

∂

∂t
+ 1

t2
∂2

∂θ2

)
= t4�.

After performing the Kelvin transformation

w̃(t, θ) = ( f̃ (t) cosmθ,− f̃ (t) sinmθ, g̃(t)),

where

f̃ (t) = f

(
1

t

)
, g̃(t) = g

(
1

t

)
.

Likewise the bubble becomes

ũ =
(
F̃(t) cosmθ,−F̃(t) sinmθ, G̃(t)

)
.

We conserve notation and drop the tildes.

wt = ( f ′(t) cosmθ,− f ′(t) sinmθ, g′(t)),
wθ = (−m f sinmθ,−m f cosmθ, 0),

ut = (F ′ cosmθ,−F ′ sinmθ,G ′),
uθ = (−mF sinmθ,−mF cosmθ, 0).

We obtain by elementary computation,

wt ∧ uθ = (mFg′ cosmθ,−mFg′ sinmθ,−mF f ′),
ut ∧ wθ = (m f G ′ cosmθ,−m f G ′ sinmθ,−m f F ′).

Hence

2(wt∧uθ+ut∧wθ) = 2
(
( f G ′ + Fg′) cosmθ,−m( f G ′ + Fg′) sinmθ,−m(F f ′ + f F ′)

)
.
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Hence, we arrive at a pair of second order ODE,

t4
(
f ′′ + 1

t
f ′ − m2

t2
f

)
= 2mt3( f G ′ + Fg′) + 4λt4

(1 + t2)2
f , (2.9)

t4
(
g′′ + 1

t
g′

)
= −2mt3(F f ′ + f F ′) + 4λt4

(1 + t2)2
g. (2.10)

Before we proceed further we note that if u is a degree m bubble,

|∇u| ≤ C .

Thus from (2.8) and (2.6), any eigenfunction will satisfy

t4|�w| ≤ t4|∇w| + 4t4

(1 + t2)2
|λ||w|

≤ C(|∇w| + |w|)t4.
We have

|�w| ≤ C(|∇w| + |w|).
If we show that w vanishes to infinite order at t = 0, the origin, then by applying the unique
continuation Lemma 2.6.1, p. 70 of [7], we may conclude that w ≡ 0 in R

2. This will
complete the proof of the theorem. To show that w does indeed vanish to infinite order, we
need to assume by contradiction that f , g ∈ L2(R2) and f , g are of course smooth. Thus
both f , g have a formal power series expansion.

f (t) ∼
∑
n≥2

ant
n, g(t) ∼

∑
n≥2

bnt
n .

Obviously n ≥ 2, for we are assuming f , g ∈ L2(R2); and t is the variable after Kelvin
transformation. The expression for the m = 1 bubble in (t, θ) coordinates is

(
2t

1 + t2
cos θ,− 2t

1 + t2
sin θ,

1 − t2

1 + t2

)
.

Thus

F(t) = 2t

1 + t2
, G(t) = −1 + 2

1 + t2
.

Thus,

F ′(t) = 2(1 − t2)

(1 + t2)2
, G ′ = − 4t

(1 + t2)2
.

Now

F f ′ + f F ′ =
⎛
⎝∑

n≥2

nant
n−1

⎞
⎠ 2t

1 + t2
+ 2

⎛
⎝∑

n≥2

ant
n

⎞
⎠ (1 − t2)

(1 + t2)2
.

Thus, (2.10) becomes after cancelling off t4 from both sides; for m = 1,

g′′ + 1

t
g′ = − 4

1 + t2
∑
n≥2

nant
n−1 + 4

⎛
⎝∑

n≥2

ant
n−1

⎞
⎠ (1 − t2)

(1 + t2)2
+ 4λ

(1 + t2)2
g.
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Since g(t) = ∑
n≥2 bnt

n , the left side above, is

∑
n≥2

n2bnt
n−2 =

∑
n≥0

(n + 2)2bn+2t
n .

We have using (2.10)

(1 + t2)2
∑
n≥0

(n + 2)2bn+2t
n

= −4(1 + t2)
∑
n≥2

nant
n−1 + 4

⎛
⎝∑

n≥2

ant
n−1

⎞
⎠ (1 − t2) + 4λ

∑
n≥2

bnt
n . (2.11)

It is easily seen from (2.11), that

(n + 2)2bn+2 =
∑

k≤n+1

αkbk +
∑

k≤n+1

γkak, n ≥ 0,

for suitable constants αk , γk . We may apply induction to conclude that bk = 0, for all k ≥ 0.
Thus g(t) vanishes to infinite order at t = 0. A similar argument but now using (2.9), allows
us to express

(
(n + 2)2 − 1

)
an+2 =

∑
k≤n+1

σkbk +
∑

k≤n+1

δkak, n ≥ 0.

We conclude ak = 0, for all k ≥ 0. Thus f (t) vanishes to infinite order at t = 0. This then
proves our theorem.
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