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Abstract

We prove a conjecture in fluid dynamics concerning optimal bounds for heat transportation in the
infinite Prandtl number limit and for large Rayleigh number Ra, predicted in [20] and [24]. Due to
a maximum principle property for the temperature exploited by Constantin-Doering and Otto-Seis,
this amounts to showing a-priori bounds for horizontally-periodic solutions of a fourth-order equation
in a strip of large width. While there have been recent nearly-optimal results up to logarithmic
divergences in Ra, we prove here optimal bounds employing Fourier analysis, integral representations,
and a bilinear estimate due to Coifman and Meyer which uses the Carleson measure characterization
of BMO functions by Fefferman.
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1 Introduction

Thermal convection processes are important to understand, since they appear in many applications such
as engineering, meteorology, geophysics, astrophysics and oceanography. Rayleigh-Bérnard’s model is
paradigmatic for natural convection: one considers a fluid layer between rigid plates which are heated
from below and cooled from above.

We will use the convention from [26], presenting non-dimensionalized equation though the scaling

x→ Ra−
1
3x; t 7→ Ra−

2
3 t; u→ Ra−

1
3 u; p 7→ Ra

2
3 p,

where Ra stands for the Rayleigh number, u for the fluid velocity and p for the pressure. The physical
system is considered in the domain [0, L]2× [0, 1] with periodicity in the horizontal variables, and through

the above scaling the new variables are defined in the set [0, HL]2 × [0, H] where H = Ra
1
3 , the height

of the container, becomes the relevant parameter. When H is small, the heat transfer happens almost
entirely by conduction. However, as H increases, such a steady state becomes unstable and bifurcation of
solutions occurs, see e.g. Chapter 6 in [2]. One then starts observing convection rolls, where the heated
fluid, becoming lighter, moves upward and then returns near the bottom after cooling down driven by
gravity, see some description in [6]. When H becomes larger, the formation of thin conducting layers near
the boundary is observed, while in the bulk of the container heat transfer mostly happens via convection
after a cascade of bifurcations, generating chaotic dynamics and fully developed turbulence ([22]).

We will consider in this paper the Boussinesq approximation in the infinite Prandtl-number limit,
namely when the viscosity of the fluid is much bigger than the thermal diffusion. For the derivation of
the governing equations of the model we still refer to [6]. Writing the velocity as u = u e1 + v e2 + w e3,
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and denoting the temperature by T , the infinite Prandtl-number limit of the Boussinesq equations in a
container of R3 is given by

(1) ∂tT + u · ∇T −∆T = 0;

(2) ∇ · u = 0;

(3) −∆u +∇p = Te3.

We supplement these equations with periodicity in (x1, x2) ∈ [−HL/2, HL/2] × [−HL/2, HL/2], and
Dirichlet boundary conditions, namely

(4) T =

{
1 for x3 = 0;

0 for x3 = H,
u = 0 for x3 = 0, H.

Using the incompressibility condition (2), one can eliminate the pressure term and obtain for the e3-
component of the velocity w the equations

(5) ∆2w = −∆hT ;

(6) w = ∂x3w = 0 for x3 = 0, H,

see [26], where ∆h denotes the horizontal Laplacian in the variables x1, x2. In the sequel we will always
assume H � 1.

The following quantity measures the average vertical heat flux in terms of the steady state conduction
heat flux, see formula (7) in [26].

Definition 1.1 The Nusselt number Nu is defined as

Nu =
1

H

ˆ H

0

〈(uT −∇T ) · e3〉 dx3,

where

〈h〉(x3) = lim sup
t0→+∞

1

t0

ˆ t0

0

1

(HL)2

ˆ
[−HL/2,HL/2]2

h(t, x1, x2, x3) dx1dx2dt.

Thus the angle brackets denote the horizontal space and time averages. Our main result in this paper is
the following theorem.

Theorem 1.2 There exists a universal constant C0 > 0 such that as H → +∞

Nu ≤ C0.

In most of the physics literature the dimensionless parameter appears as a coefficient in (3):

−∆u +∇p = RaTe3,

Formula (2.6) in [14] defines the Nusselt number using this scaling, which we refer to as Nuphys. The
theorem above corresponds in the physics language to the following result.

Corollary 1.3 In the limit Ra→ +∞ the following bound holds for the Nusselt number

Nuphys ≤ C0(Ra)
1
3 .
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We now provide a brief history of this problem. Malkus ([24]) and Howard ([20]) gave compelling

boundary-layer arguments predicting the scaling Nuphys ' (Ra)
1
3 (we are back to the notation in Defi-

nition 1.1). The derivation of upper bounds in convective heat transport begins with seminal papers by
Howard ([19], [21]) and further work by Busse ([3], [4]). Some sub-optimal bounds, in terms of higher
powers of Ra, were proven in [19], [13]. A powerful and beautiful new idea was introduced to the subject
by Constantin and Doering, [9], called the background field method. To a background temperature one
associates a quadratic form that needs to be non-negative definite: one then tries to minimize a suitable
integral on such backgrounds (see also [11], [13], [12]). This method allowed the authors to obtain an
optimal bound up to a logarithmic factor in Ra, and was carried forward in another paper with a del-
icate analysis of singular integrals by Doering, Otto and Reznikoff, [14]. More recently, in [26] another
improvement of the estimate from the background field method was derived, showing at the same time
some of the limitations of such a method, see also [25]. In the same paper, a sharper estimate was derived
using a maximum principle for the temperature, which always lies in the range [0, 1] (see also [10]). More
precisely, in [26] it is shown that

(7) Nu ≤ C(Ra)
1
3 log

1
3 log Ra.

For further reading about this problem there is an extensive review article by Ahlers et al. ([1]).
It is perhaps worthwhile to point out that numerical studies by Ierley, Kerswell and Plasting ([23])

predicted in the high Rayleigh number regime, the more precise bound

Nuphys ≤ 0.139 (Ra)
1
3 .

Our method does not give any information about the above numerical constant.
We also refer to [7] and [28] for related results on upper bounds in the finite-Prandtl number regime.

In the following we will consider the quantity

θ = T − 1

(LH)2

ˆ
[−LH/2,LH/2]2

Tdx′,

which by (4) satisfies the uniform bound

(8) |θ| ≤ 1 in {0 ≤ x3 ≤ H}.

We note that (5)-(6) can be rewritten as

(9)

{
∆2w = ∆hθ in R2 × [0, H];

w = ∂x3
w = 0 on {x3 = 0, H},

with all quantities periodically extended in (x1, x2).

Taking the horizontal space- and time-average to (1), using the boundary conditions and the constancy
of vertical heat flux one finds that for all x3

Nu = 〈T w〉 − ∂x3
〈T 〉,

where w is as in (9). This fact and the bounds on T clearly imply that for all δ ∈ (0, H)

Nu =
1

δ

(ˆ δ

0

〈T w〉 dx3 + 1− 〈T |x3=δ〉

)
≤ 1

δ

(ˆ δ

0

〈θ w〉 dx3 + 1

)
,

where in the first equality we used the fact that w has null horizontal average.
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In [26] (Section C, proof of Theorem 2) it was noticed that since supx3
〈θ2〉 ≤ 〈supx θ

2〉, one gets

(10) Nu ≤ sup
x3∈(0,δ)

〈w2〉 12 +
1

δ
for δ ∈ (0, 1),

and the quantity 〈w2〉 was controlled for δ small via a bound on supx3∈(0,1)〈(∂
2
x3
w)2〉, leading to (7)

mainly via Fourier analysis, Caccioppoli-type estimates and the maximum principle.
Here we choose instead δ = 1, to write

Nu ≤ sup
x3∈(0,1)

〈θ w〉+ 1,

getting then uniform bounds on 〈θ w〉 from θ ∈ L∞ by controlling 〈|w|〉 uniformly in x3 ∈ [0, 1], without
passing through L∞-estimates on second-order derivatives of w. We use instead a variant of a theorem by
Coifman and Meyer from [8] exploiting Carleson measures. Carleson measures, recalled in the Appendix,
were introduced in [5] for the resolution of the Corona problem. Later, in the seminal paper [16] a
characterization of BMO functions was obtained via Carleson measures, see Theorem 2.1, used in [15]
and [16] to show that the dual of Hardy’s space is BMO. Recall that f ∈ BMO(Rn) if one has a uniform
control of a suitable integral involving f and its average for all balls B ⊆ Rn (see Chapter VI in [27]),
and that clearly one has

(11) ‖f‖BMO(Rn) ≤ 2‖f‖L∞(Rn).

We explain next the main steps in the strategy to achieve our goal. First, since we are dealing with
a bi-Laplace equation on a large strip (with both Dirichlet and Neumann boundary conditions), it is
useful to understand the solution of such a boundary-value problem in a half-space, which represents a
prototype situation when we are close to the bottom of the strip. In this case, the expression of the
Green’s kernel for the counterpart of (9) in R3

+ is explicitly known, and we prove for it suitable decay
properties, as well as for some if its derivatives, see Lemma 2.5.

We then study the solution of the problem

(12)


∆2w̃1 = χ{0≤x3≤H/2}∆hθ in R3

+;

w̃1 = 0 on {x3 = 0};
∂x3

w̃1 = 0 on {x3 = 0},

forgetting about the boundary conditions on the upper side of the strip, that can be represented convo-
luting with a kernel K(x, y), i.e.

w̃1(x) =

ˆ
{0≤x3≤H/2}

K(x, y)θ(y)dy.

Since we only care about the behavior of w̃1 for x3 ∈ [0, 1], understanding solutions to the latter problem
will be a key point in the argument. It turns out that the kernel K has cubic decay, which would lead
to logarithmic divergences in H after integration. However, a more precise asymptotics of K yields, see
Remark 2.7 and Lemma 3.1 (setting here L = 1 for the purpose of brevity)

〈θ w〉 ' 〈θ w̃1〉 '
1

H2

ˆ
[−H,H]2

dx′θx3
1 (x′)x23

ˆ
{4x3<y3≤H/2}

y3 dy3((∆hPy3) ∗ θy31 )(x′),

where we used the notation θt(x′) := θ(x′, t), t ≥ 0. We then symmetrize the latter expression integrating
by parts in x′ and using the semigroup property of Poisson’s kernel, to write

〈θ w〉 '
 
[−H,H]2

ˆ
{4x3≤y3≤H/2}

x23y3((∇hPy3/2) ∗ θx3
1 )(x′) · ((∇hPy3/2) ∗ (θy3χ[−H,H]2)(x′)dy3dx,
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see the proof of Proposition 3.2 for precise estimates. By Theorem 2.1 one has that (for x3 fixed)

|(t∇hPt/2 ∗ θx3
1 )(x′)|2 dx

′dt

t

is a Carleson measure, see Definition 5.2, since θ̃x3
1 (·) is bounded (once x3 is fixed). In order to deal

with the y3-dependence in θy3 , see Proposition 3.3, we adapt a bilinear estimate from [8], for which we
present a variant in Section 2, see Proposition 2.3 for the specific statement. Such estimates have the
advantage to exploit cancellations via paraproducts (see the Appendix) from the L2-integrability of one
of the factors. This property allows us to localize the integration in a suitable box of size H and instead
of using the Hardy-Littlewood maximal function as done in [8], we directly estimate the non-tangential
maximal function, in order to avoid logarithmic divergences. We notice that even in two dimensions our
strategy does not seem to simplify, see Remark 2.8.

We then subtract from w̃1 a correction ŵ1 that is bi-harmonic in the strip and fixes the boundary
conditions on {x3 = H}, which were not satisfied by w̃1 on {x3 = H}: this step is mostly worked out
via Fourier analysis, similar to [26], keeping track of the uniformity of the estimates when H is large.
This gives control on a surrogate of the function w in (9), for which the right hand-side is set equal to
zero on the upper half-strip. However, the same argument works when replacing in (12) χ{0≤x3≤H/2}
by χ{H/2≤x3≤H}: for the latter we can indeed control the L∞ norm near the lower boundary due to bi-
harmonicity and the local boundary conditions. The estimates obtained in this way allow one to obtain
the conclusion of Theorem 1.2.

The plan of the paper is as follows. In Section 2 we recall some basic facts about Poisson’s kernel
and state a variant of a bilinear estimate from [8]. We then study the Green’s function for the bi-
Laplacian in the half-space, providing some asymptotic behaviour on its horizontal Laplacian via scaling
and invariance properties. In Section 3 we derive estimates on solutions to the counterpart of (9) in
the half-space, imposing Dirichlet and Neumann boundary conditions on {x3 = 0} only, obtaining a key
estimate on averaged integrals over horizontal periodic squares. In Section 4 the boundary conditions
are then fixed on the upper layer {x3 = H}, and uniform bounds on Nusselt’s number are derived. An
appendix describes the proof of Proposition 2.3, adapting the arguments for Theorem 33 in [8].

Notation. Throughout the paper, the letter C will denote a large, but fixed, positive constant which is
allowed to vary from one formula to another, and even within the same formula. We also use the standard
symbol O(·) for a quantity that is upper bounded by a fixed constant times its argument.
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2 Some preliminary results

In this section we collect some useful preliminary facts. We recall some properties of Poisson’s kernel and
a result from [16] concerning harmonic extensions from R2 to the half three-space, stating then a variant
of a bilinear estimate from [8]. Moreover, we analyze the asymptotic behavior of another kernel in R3

+,
useful to represent the solutions of (12).
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2.1 Poisson’s kernel, a biharmonic kernel and a bilinear estimate

We first recall the definition and some properties of Poisson’s kernel in the upper half-space, which in
three dimensions is given by the formula

(13) Ps(x
′) =

1

2π

s

(s2 + |x′|2)
3
2

; s > 0, x′ ∈ R2.

If f(x′) is a bounded function on R2, then

(14) F (x′, s) := (Ps ∗ f)(x′)

is the harmonic extension of f to R3
+. For later convenience, we notice that

(15) ∆hPs(x
′) =

3s
(
3|x′|2 − 2s2

)
2π (s2 + |x′|2)

7
2

.

We also recall the following result (in a particular case), giving a characterization of BMO functions.

Theorem 2.1 ([16], Theorem 3) There exists a constant C0 > 0 such that, for f(·) ∈ BMO(R2) and
letting

T (x0, h) :=
{

(x, s) ∈ R3
+ : |x− x0| ≤ h, s ∈ (0, h)

}
; x0 ∈ R2, h > 0,

one has

(16) sup
x0∈R2

ˆ
T (x0,h)

|t∇hF (x′, t)|2 dx′ dt
t
≤ C0 h

2‖f‖2BMO(R2),

where F is as in (14) amd ∇h stands for the horizontal gradient.

Remark 2.2 (i) Even though the quadratic dependence in the BMO norm is not explicitly stated in
Theorem 3 of [16], it appears in the second formula on page 147.

(ii) Provided (P1 ∗f)(0) ∈ R, finiteness of the integral in (16) implies in turn that f is of class BMO.

For a measurable and bounded function F (z, t) defined on R3
+, the non-tangential maximal function

(see Figure 1) NF : R2 → R is given by

(17) NF (x) = sup {|F (z, t)| : |x− z| < t} .

For F as before and t > 0, we define F t : R2 → R as

F t(x′) := F (x′, t).

The above function is useful in the proof of [8, Theorem 33], for which we have the following variant.

Proposition 2.3 Let ψ be the vectorial convolution kernel in R2 given by

ψ(x′) = ∇x′P1(x′).

For t > 0 let ψt(·) = t−2ψ(t−1·). Let ρ be a BMO function in R2 and let F be a bounded function on
R3

+ with compact support. Let also m : (0,+∞)→ R be measurable with |m(t)| ≤ 1 for all t. Then there

exists a constant C > 0, independent of ρ, F and m, such that letting F̌ (x′, t) = (ψt ∗ F t)(x′), one has(ˆ
R2

∣∣∣∣ˆ ∞
0

(ψt ∗ ρ)(x′) · (ψt ∗ F t)(x′)m(t)
dt

t

∣∣∣∣2 dx′
) 1

2

≤ C‖ρ‖BMO‖NF̌‖L2(R2).
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R2

x

(z, t)

Figure 1: the non-tangential maximal function

Remark 2.4 Via the same proof, one can indeed obtain the same conclusion for a convolution kernel
verifying ˆ

R2

ψ(x′)dx′ = 0,

and such that its Fourier transform satisfies

(18)

{
|∂αξ ψ̂(ξ)| ≤ C(α)e−C(α)−1|ξ| for |ξ| ≥ 1;

|ξ|α|∂αξ ψ̂(ξ)| ≤ C(α)|ξ| for |ξ| ≤ 1.

We will prove in the appendix that ‖NF̌‖L2(R2) is finite for the kernel in Proposition 2.3. This property
can be indeed verified under the previous more general assumptions.

The difference of Proposition 2.3 compared to the original version is that we allow a dependence in the
t-variable in the second convolved function. The argument follows the original one, and in the appendix
we describe how the proof in [8] adapts to this situation as well.

The result applies in particular to the (vectorial) case of the horizontal gradient of Poisson’s kernel

ψ(x′) = ∇hP1(x′),

where P1 is as in (13) with s = 1.

2.2 Useful Kernel Estimates in the Upper Half-Space

We are interested next in deriving some asymptotic estimates involving the Green’s function for the bi-
Laplacian with zero Dirichlet and Neumann boundary conditions in R3

+ = {(η1, η2, η3) : η3 > 0}, namely
the solution G(ξ, η) (decaying to zero as η3 → +∞) of

∆2
ηG(ξ, ·) = δξ in R3

+;

G(ξ, ·) = 0 on ∂R3
+;

∂η3G(ξ, ·) = 0 on ∂R3
+.

Recall that from Lemma 8 in [17], G has the exact expression

(19) G(ξ, η) =
1

16π
|ξ − η|

ˆ |ξ∗−η|
|ξ−η|

1

(t2 − 1) t−2dt,

where ξ∗ stands for the reflection of ξ across the boundary, {η3 = 0}. From an explicit computation one
obtains the following formula for G

G(ξ, η) =
1

16π
|ξ − η|

[
|ξ∗ − η|
|ξ − η|

+
|ξ − η|
|ξ∗ − η|

− 2

]
,

7



which after further manipulation becomes

G(ξ, η) =
1

16π

(|ξ∗ − η| − |ξ − η|)2

|ξ∗ − η|
.

Computing the horizontal Laplacian ∆η
h = ∂2

∂η21
+ ∂2

∂η22
, one then finds

(20) K(ξ, η) := ∆η
hG(ξ, η) =

1

8π

[
1

|ξ∗ − η|
− 1

|ξ − η|
− (ξ3 − η3)2

|ξ − η|3
+

ξ23 + η23
|ξ∗ − η|3

+ 6
ξ3η3(ξ3 + η3)2

|ξ∗ − η|5

]
.

We observe the following three covariance properties for all ξ, η ∈ R3
+ and for all v′ ∈ R2:

(21) K(λξ, λη) =
1

λ
K(ξ, η), λ > 0; K(ξ, η) = K(η, ξ); K(ξ+(v′, 0), η+(v′, 0)) = K(ξ, η).

By these, it will be sufficient to understand the asymptotics for |η| → +∞ of

(22) K0(η) = K(ξ0, η); ξ0 = (0, 0, 1).

We also notice that the function K0 is even with respect to reflection around the η3-axis, namely

(23) K0(η1, η2, η3) = K0(−η1,−η2, η3).

We will now deduce some asymptotics on the function K0.

Lemma 2.5 For ξ0 and K0 as in (22), we have the upper bound

(24) |K0(η)| ≤ C

|η − ξ0|
; |η − ξ0| ≤ 8.

Moreover, for a vector (a, b, c) ∈ R3 of unit norm, c ≥ 0, and for R > 0 large one has

(25) K0(ξ0 + (Ra,Rb,Rc)) =
3c2
(
3a2 + 3b2 − 2c2

)
4πR3

+O
(
R−4

)
,

(26) ∇ηK0(ξ0 + (Ra,Rb,Rc)) = O(R−4);

(27) ∇(2)
η,ηK0(ξ0 + (Ra,Rb,Rc)) = O(R−5).

The above estimates are uniform as R → +∞ in the choice of the unit vector (a, b, c), with c ≥ 0.
Furthermore, there exists C > 0 such that

(28) K0(η′, η3) ≤ C

|η′|3
; η′ ∈ R2, |η′| ≥ 1, η3 ∈ (0, 1].

Proof. The proof of (25) can be deduced from some cancellations after Taylor expansions of the
following quantities, corresponding to each of term in (20), choosing η = R(a, b, c), with a2 + b2 + c2 = 1,
ξ = (0, 0, 1) and ξ∗ = (0, 0,−1):

1

(R2a2 +R2b2 + (Rc+ 1)2)
1
2

=
1

R
− c

R2
+

2c2 − a2 − b2

2R3
+O

(
1

R4

)
;

1

(R2a2 +R2b2 + (Rc− 1)2)
1
2

=
1

R
+

c

R2
+

2c2 − a2 − b2

2R3
+O

(
1

R4

)
;
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(Rc− 1)2

(R2a2 +R2b2 + (1−Rc)2)
3/2

=
c2

R
+
c3 − 2c

(
a2 + b2

)
R2

+
2c4 − 11c2

(
a2 + b2

)
+ 2

(
a2 + b2

)2
2R3

+O

(
1

R4

)
;

R2c2 + 1

(R2a2 +R2b2 + (Rc+ 1)2)
3/2

=
c2

R
− 3c3

R2
+
c2
(
a2 + b2

)
+ 2

(
a2 + b2

)2
+ 14c4

2R3
+O

(
1

R4

)
;

Rc(Rc+ 1)2

(R2a2 +R2b2 + (Rc+ 1)2)
5/2

=
c3

R2
+

2c2
(
a2 + b2

)
− 3c4

R3
+O

(
1

R4

)
.

The proofs of the gradient and the hessian estimates can be obtained in a similar manner.
While the condition c ≥ 0 is needed in (25) and the next two formulas to have the argument of K0 in

R3
+, the four estimates hold regardless of the sign of c, allowing to show (28) as well. This observation is

only useful to control the kernel at (non-problematic) points whose x3-coordinate is less than 1.

Using the above result, we obtain next the following properties of K(·, ·).

Proposition 2.6 There exists C > 0 such that for x3, y3 > 0, x 6= y, the kernel K satisfies

(29) |K(x, y)| ≤ C

|x− y|
, for |x− y| ≤ 8x3.

Moreover, for any unit vector (a, b, c) with c ≥ 0, we have, uniformly in c ≥ 0 for R > 2x3:

(30) K(x, x+R(a, b, c)) =
3x23c

2
(
3a2 + 3b2 − 2c2

)
4πR3

+O

(
x33
R4

)
;

(31) (∇ηK)(x, x+R(a, b, c)) = O

(
x23
R4

)
,

and

(32) (∇(2)
η,ηK)(x, x+R(a, b, c)) = O

(
x23
R5

)
.

Proof. We only show (30), the other two estimates being similar.
From the third and first properties in (21) we find

K(x, x+R(a, b, c)) = K((0, x3), (0, x3) +R(a, b, c)) =
1

x3
K((0, 0, 1), (0, 0, 1) +R/x3(a, b, c)).

Recalling (22), this becomes

K(x, x+R(a, b, c)) =
1

x3
K0(ξ0 +R/x3(a, b, c)).

From (25) and the observation at the end of the proof of Lemma 2.5 we then obtain

K(x, x+R(a, b, c)) =
1

x3

(
3c2
(
3a2 + 3b2 − 2c2

)
4π

x33
R3

+O

(
x43
R4

))
,

as desired.
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Remark 2.7 We notice that, comparing with (15), for y3 > 2x3

K(x, y) =
1

2
x23y3(∆hPy3)(x′ − y′) +O

(
x33

|x− y|4

)
.

In fact, from a Taylor expansion of (15) and (30) one finds that

y3(∆hPy3)(x′ − y′) =
3y23(3|x′ − y′|2 − 2y23)

2π(y23 + |x′ − y′|2)
7
2

=
3(y3 − x3)2(3|x′ − y′|2 − 2(y3 − x3)2)

2π((y3 − x3)2 + |x′ − y′|2)
7
2

+O

(
x3

|x− y|4

)
.

This observation will be crucial for the estimates in the next section.

Remark 2.8 In two dimensions the counterpart of formula (19) becomes

G(ξ, η) =
1

8π
|ξ − η|2

ˆ |ξ∗−η|
|ξ−η|

1

(t2 − 1) t−1dt,

which gives, after a Taylor expansion, G(ξ, η) ' 1
8π (|ξ∗−η|− |ξ−η|)2 for |η| large. Taking the horizontal

Laplacian, with calculations similar as above one gets (with the same notation)

K(x, y) =
1

2
x22y2(∆hPy2)(x′ − y′) +O

(
x32

|x− y|3

)
.

Therefore, the kernel K has inverse quadratic behaviour and would lead to analogous divergence issues,
which might be treated though with the same strategy.

3 Estimates on approximate solutions to (9)

We now consider two cut-off functions in the vertical variable χ{0≤x3≤H/2}, χ{H/2≤x3≤H} and split θ as
θ = θ1 + θ2, with θ1, θ2 periodically extended in x′ and defined as

(33) θ1 = θχ{0≤x3≤H/2}; θ2 = θχ{H/2≤x3≤H}.

For K as in (20), we will prove in this section a key estimate involving the function (solving (12))

(34) w̃1(x) :=

ˆ
R3

+

K(x, y) θ1(y)dy

near the bottom of the strip {0 ≤ x3 ≤ H}. We begin with a preliminary lemma, for which we recall
Remark 2.7.

Lemma 3.1 There exists a fixed constant C > 0 such that, writing w̃1(x) = I(x) + II(x) with

I(x) =

ˆ
{0<y3≤4x3}

K(x, y) θ1(y)dy; II(x) =

ˆ
{4x3<y3≤H/2}

K(x, y) θ1(y)dy,

one has the estimates

(35) |I| ≤ Cx23;

∣∣∣∣∣II − x23
2

ˆ
{4x3<y3≤H/2}

y3((∆hPy3) ∗ θy31 )(x′)dy3

∣∣∣∣∣ ≤ Cx23; x3 ∈ (0, 1].

In the latter formula, the convolution is taken with respect to the horizontal variables, and θx3
1 : R2 → R

denotes the restriction of θ1 to the horizontal plane at height x3, namely

θx3
1 (x′) := θ1(x′, x3).

10



x

QxQj Qi

Figure 2: the cubes Qx and (Qi)i

Proof. To prove the first inequality in (35), we consider the cube Qx centered at (x′, 2x3) and of size
4x3, so its lower face lies on {x3 = 0}, see Figure 2. We next partition the strip {0 < y3 < 4x3} into Qx
and a sequence of cubes defined as follows. For zi ∈ Z2 \ {(0, 0)}, let Qi denote the cube of size 4x3 with
center at the point pi := (x′ + 4x3zi, 2x3).

We then notice that, by (29) and the uniform bound on θ (maximum principle for T )∣∣∣∣ˆ
Qx

K(x, y)θ1(y)dy

∣∣∣∣ ≤ C ∣∣∣∣ˆ
Qx

1

|x− y|
dy

∣∣∣∣ ≤ C ˆ 8x3

0

r2

r
dr ≤ Cx23.

On the other hand, concerning Qi, since the decay of K from (30) is cubic towards infinity, we have that∣∣∣∣ˆ
Qi

K(x, y)θ1(y)dy

∣∣∣∣ ≤ C|Qi| sup
y∈Qi

|K(x, y)| ≤ Cx33
x23

|x− pi|3
.

Therefore, by the choice of pi and Qi we have that∣∣∣∣∣
ˆ
{0<y3<4x3}\Qx

K(x, y)θ1(y)dy

∣∣∣∣∣ ≤ Cx53∑
i

1

|x− pi|3
≤ Cx53

ˆ ∞
x3

r

r3
dr ≤ Cx23.

The last three formulas prove that |I| ≤ Cx23, as desired.

The estimate of II simply follows from Remark 2.7, that yields (still by the fact that θ ∈ L∞)∣∣∣∣∣II − x23
2

ˆ
{4x3<y3≤H/2}

y3((∆hPy3) ∗ θy31 )(x′)dy3

∣∣∣∣∣ ≤ C

ˆ
{4x3<y3≤H/2}

x33
|x− y|4

dy

≤ Cx33

ˆ ∞
3x3

s2

s4
ds ≤ Cx23,

concluding the proof.

We next estimate the principal part of II appearing in (35), integrated versus θ in x′ ∈ [−HL/2, HL/2]
and in x3 ∈ [0, 1]. In the next formula and in the proof below, we will sometimes write the differentials
right after the corresponding integral signs: even though this is unconventional, we hope it will facilitate
tracking the various domains of integration.

Proposition 3.2 Let w̃1 be as in (34). Then there exists a constant C1 > 0 independent of H (large)
such that for any x3 ∈ [0, 1] one has the upper bound∣∣∣∣∣ 1

(HL)2

ˆ
[−HL/2,HL/2]2

dx′θx3
1 (x′)x23

ˆ
{4x3<y3≤H/2}

y3 dy3((∆hPy3) ∗ θy31 )(x′)

∣∣∣∣∣ ≤ C1.

Proof. We first localize θy31 : R2 → R onto the box [−2HL, 2HL]2 and its complement in the (x1, x2)-
coordinates. We write

θy31 = gy31 + gy32 , with gy31 = θy31 χ[−2HL,2HL]2 , gy32 = θy31 χR2\[−2HL,2HL]2 .

11



We note next that for x′ ∈ [−HL/2, HL/2]2, by (15) and the fact that ‖θ‖L∞ ≤ 1, one has

|y3((∆hPy3) ∗ gy32 )(x′)| ≤ C
ˆ
R2\[−2HL,2HL]2

|θy31 (w)|dw
(y23 + |x′ − w|2)

3
2

≤ C
ˆ
{|w|≥HL}

dw

|w|3
≤ C

H
.

This implies that∣∣∣∣∣
ˆ
[−HL/2,HL/2]2

θx3
1 (x′)

ˆ
{4x3≤y3≤H/2}

x23y3((∆hPy3) ∗ gy32 )(x′)dy3dx
′

∣∣∣∣∣
≤
ˆ
[−HL/2,HL/2]2

ˆ H

0

dy3
C

H
dx′ ≤ CH2.

Therefore, we will now focus on gy31 . By the semi-group property of the Poisson kernel we have that
Py3 = Py3/2 ∗ Py3/2, therefore using the symmetry and associativity of convolutions together with the
fact that for f ∈ L∞(R2)

∂

∂x′i
(Ps ∗ f) =

(
∂

∂x′i
Ps

)
∗ f ; i = 1, 2, s > 0,

we find ˆ
[−HL/2,HL/2]2

dx′θx3
1 (x′)

ˆ
{4x3≤y3≤H/2}

x23y3((∆hPy3) ∗ gy31 )(x′)dy3

=

ˆ
R2

dx′
ˆ
{4x3≤y3≤H/2}

(Py3/2 ∗
(
θx3
1 χ[−HL/2,HL/2]2

)
)(x′)x23y3∆h(Py3/2 ∗ g

y3
1 )(x′)dy3.

Integrating by parts in the horizontal variables and setting

θ̃x3
1 = θx3

1 (x′)χ[−HL/2,HL/2]2(x′),

we find that the latter integral expression is equal to (minus) A+B, where

A =

ˆ
R2\[−8HL,8HL]2

ˆ
{4x3≤y3≤H/2}

x23y3((∇hPy3/2) ∗ θ̃x3
1 )(x′) · ((∇hPy3/2) ∗ gy31 )(x′)dy3dx

′;

B =

ˆ
[−8HL,8HL]2

ˆ
{4x3≤y3≤H/2}

x23y3((∇hPy3/2) ∗ θ̃x3
1 )(x′) · ((∇hPy3/2) ∗ gy31 )(x′)dy3dx

′.

We claim that A is of order O(H2): in fact, we notice that from the expression of Ps in (13) and an
elementary inequality

|∇hPy3/2(w)| ≤ C

(y23 + |w|2)
3
2

; |y3∇hPy3/2(w)| ≤ Cy3

(y23 + |w|2)
3
2

.

Hence, for x′ ∈ R2 \ [−8HL, 8HL]2 we have that, by the uniform bound on θ∣∣∣((∇hPy3/2) ∗ θ̃x3
1 )(x′)

∣∣∣ ≤ ˆ
R2

|θ̃x3
1 | dw

(y23 + |x′ − w|2)
3
2

≤ C H2

|x′|3
.

On the other hand, still for x′ ∈ R2 \ [−8HL, 8HL]2 we obtain∣∣y3((∇hPy3/2) ∗ gy31 )(x′)
∣∣ ≤ ˆ

R2

|gy31 | y3 dw
(y23 + |x′ − w|2)

3
2

≤ C H2

|x′|2
.

Hence we find that

(36) |A| ≤ C
ˆ
{|x′|≥8HL}

x23

ˆ H/2

0

dy3
H4

|x′|5
dx′ ≤ CH2.
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We next estimate the term B: using the Cauchy-Schwartz inequality in x′ we get that

|B| ≤ x23

(ˆ
[−8HL,8HL]2

dx′

) 1
2

×

[ˆ
[−8HL,8HL]2

∣∣∣∣ˆ ∞
0

y3((∇hPy3/2) ∗ θ̃x3
1 )(x′) · y3((∇hPy3/2) ∗ gy31 )(x′)χS(y3)

dy3
y3

∣∣∣∣2 dx′
] 1

2

,

where we defined the set S as

S =

{
y3 | 4x3 ≤ y3 ≤

H

2

}
.

Setting now
t = y3; ψt = t∇hPt/2; m(t) = χS(t),

we can write that

|B| ≤ CH

[ˆ
R2

∣∣∣∣ˆ ∞
0

(ψt ∗ θ̃x3
1 )(x′) · (ψt ∗ gt1)(x′)m(t)

dt

t

∣∣∣∣2 dx′
] 1

2

x23.

Noting that (in vectorial sense)
´
R2 ψt(x

′)dx′ = 0, we have by Theorem 2.1 that

|(ψt ∗ θ̃x3
1 )(x′)|2 dx

′dt

t

is a Carleson measure, see Definition 5.2 and Theorem 2.1, since θ̃x3
1 (·) is in L∞ with x3 fixed. Moreover,

we have clearly
‖m(t)‖∞ ≤ 1.

Recalling the notion of non-tangential maximal function from (17) and choosing

F (z, t) = gt1(z); F̌ (z, t) = (ψt ∗ gt1)(z),

applying Proposition 2.3 and (11) we find that

(37) |B| ≤ CH‖NF̌‖L2(R2)‖θ1‖L∞ .

To estimate the above L2-norm we first notice that

(38) |F̌ (z, t)| = |(ψt ∗ gt1)(z)| ≤ C
ˆ
R2

|gt1(w)|t
(t2 + |z − w|2)

3
2

dw ≤ C
ˆ
R2

t

(t2 + |w|2)
3
2

dw ≤ C.

We now specialize to the case in which x′ ∈ R2 \ [−10HL, 10HL]2: notice that for |z − x′| ≤ t we have

t2 + |x′ − w|2 ≤ 2(t2 + |z − w|2),

which implies
Pt(z − w) ≤ CPt(x′ − w); for |z − x′| ≤ t.

Using this inequality we get

|F̌ (z, t)| ≤ C
ˆ
R2

|gt1(w)|t
(t2 + |x′ − w|2)

3
2

dw; |z − x′| ≤ t, x′ ∈ R2 \ [−10HL, 10HL]2.

Since we only integrate for w ∈ [−2H, 2H]2 in the support of gt1, we then obtain

|F̌ (z, t)| ≤ C

|x′|2

ˆ
R2

|gt1(w)|dw ≤ C H2

|x′|2
, |z − x′| ≤ t, x′ ∈ R2 \ [−10HL, 10HL]2.
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Recalling (17), combining (38) and the latter estimate we find that

‖NF̌‖L2(R2) ≤ CH.

From the last inequality, (36) and (37) we then get the desired conclusion.

From Lemma 3.1 and Proposition 3.2 we derive the following consequence.

Proposition 3.3 Let θ1 be as in (33) and w̃1 as in (34). Then there exists a fixed constant C > 0
independent of H (large) such that∣∣∣∣∣ 1

(HL)2

ˆ
[−HL/2,HL/2]2

θ1(x′, x3)w̃1(x′, x3)dx′

∣∣∣∣∣ ≤ C; x3 ∈ (0, 1].

We next consider the above function w̃1 for x3 close to H, where we have better regularity properties
due to its bi-harmonicity. The following estimates will play a crucial role in Section 4, particularly in
ensuring the boundary conditions are met.

Proposition 3.4 There exist fixed positive constants H0 and C0 such that for H ≥ H0 one has

(39) |w̃1(x)| ≤ C0H
2; |∇w̃1(x)| ≤ C0H; |∇(2)w̃1(x)| ≤ C0, x = (x′, x3), x3 ∈ [3/4H, 5/4H].

Proof. We proceed similarly to the proof of the first estimate in (35). Assuming without loss of
generality that x′ = 0, we let Q̃i denote the box of sides HL/2, HL/2 centered at ẑi := (HL/2 z̃i, H/4),
with z̃i ∈ Z2, see Figure 3.

x

Q̃i
HL/2

HL/2

HL/2

Figure 3: the boxes (Q̃i)i

Using (30) and the second property in (21) we have that, for x′ = 0 and x3 ∈ [3/4H, 5/4H],

(40)

∣∣∣∣ˆ
Q̃i

K(x, y)θ1(y)dy

∣∣∣∣ =

∣∣∣∣ˆ
Q̃i

K(y, x)θ1(y)dy

∣∣∣∣ ≤ C ∣∣∣∣ˆ
Q̃i

y23dy

∣∣∣∣ 1

|x− ẑi|3
≤ CH5 1

|x− ẑi|3
.

Recalling the above definition of z̃i and ẑi and the fact that x3 ∈ [3/4H, 5/4H], we have that

(41) |x− ẑi| ≥ C−1H(1 + |z̃i|2)
1
2 .

14



The latter two formulas imply

(42) |w̃1(x)| ≤ CH2
∑
z̃i∈Z2

(1 + |z̃i|2)−
3
2 ≤ CH2

ˆ ∞
0

s

(1 + s2)
3
2

ds ≤ CH2.

Concerning the gradient estimate, recalling (21), the fact that K(x, y) = K(y, x) gives

(43) ∇ξK(x, y) = ∇ηK(y, x),

and similarly

(44) ∇ξ,ξK(x, y) = ∇η,ηK(y, x).

From these and (31)-(32) we deduce that

|∇ξK(x, y)| ≤ C y23
|x− ẑi|4

; |∇(2)
ξ,ξK(x, y)| ≤ C y23

|x− ẑi|5
; y ∈ Q̃i.

Analogously to (40), these imply that∣∣∣∣ˆ
Q̃i

∇ξK(x, y)θ̃1(y)dy

∣∣∣∣ ≤ CH5 1

|x− ẑi|4
;

∣∣∣∣ˆ
Q̃i

∇(2)
ξ,ξK(x, y)θ̃1(y)dy

∣∣∣∣ ≤ CH5 1

|x− ẑi|5
.

Since x3 ≥ 3/4H and y3 ≤ H/2, we are avoiding the singularity of K and we can write that

(∇w̃1)(x) =

ˆ
{0≤y3≤H/2}

∇ξK(x, y) θ1(y)dy; (∇(2)w̃1)(x) =

ˆ
{0≤y3≤H/2}

∇(2)
ξ,ξK(x, y) θ1(y)dy.

By the latter formulas and (41), reasoning as for (42) we then find

|(∇w̃1)(x)| ≤ CH
∑
z̃i∈Z2

(1 + |z̃i|2)−2 ≤ CH
ˆ ∞
0

s

(1 + s2)2
ds ≤ CH;

|(∇(2)w̃1)(x)| ≤ C
∑
z̃i∈Z2

(1 + |z̃i|2)−
5
2 ≤ C

ˆ ∞
0

s

(1 + s2)
5
2

ds ≤ C.

This concludes the proof.

Remark 3.5 One can get estimates on higher-order derivatives of w̃1 for x3 ∈ [3/4H, 5/4H] as follows.
Consider the scaled function

w̌1(x) :=
1

H2
ŵ1(Hx); x = (x′, x3), x′ ∈ R2, x3 ∈ [3/4, 5/4].

Then this is bi-harmonic, horizontally L-periodic and by the previous proposition also uniformly bounded,
together with its first- and second-order derivatives. Standard regularity theory implies that

|∇(j)w̌1| ≤ Cj for x3 ∈ [7/8, 9/8]; |j| ≥ 3,

which gives in turn

(45) |∇(j)ŵ1| ≤ CjH2−j for x3 ∈ [7/8H, 9/8H]; |j| ≥ 3.
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4 Corrections to fit boundary data and conclusion

We need next to adjust the above function w̃1, obtained convoluting K with θ1, see (33), to achieve the
correct boundary data on {x3 = H}. In order to do it, we would therefore need to consider w̃1 − ŵ1,
where ŵ1 is an (LH)-periodic function in x1, x2 that satisfies

(46)


∆2ŵ1 = 0 on R2 × [0, H];

ŵ1 = w̃1 on {x3 = H};
∂x3

ŵ1 = ∂x3
w̃1 on {x3 = H}.

Recall also that, by Proposition 3.4,

|w̃1| ≤ C H2; |∂x3w̃1| ≤ C H, on {x3 = H}.

Throughout this section we will assume for simplicity that L = 1, the general case requiring only obvious

modifications. We can solve (46) via Fourier decomposition in the horizontal variables: for k ∈ Z2 and
x′ ∈ R2, we write

(47) ŵ1(x′, x3) =
∑
k∈Z2

ak(x3)e2πi
k
H ·x

′
.

The function ak satisfies the fourth-order ODE
a′′′′k − 2

∣∣ k
H

∣∣2 a′′k +
∣∣ k
H

∣∣4 ak = 0 in [0, H];

ak = a′k = 0 in {x3 = 0};
ak = bk on {x3 = H};
a′k = ck on {x3 = H},

where bk, ck are the Fourier components of w̃1 and ∂x3w̃1 respectively on {x3 = H}, defined by

w̃1(x′, H) =
∑
k∈Z2

bke
2πi k

H ·x
′
; (∂x3

w̃1)(x′, H) =
∑
k∈Z2

cke
2πi k

H ·x
′
.(48)

From an explicit computation, see also Section C in [26] for a related one, it follows that for k = 0

(49) a0 = A0x
2
3 +B0x

3
3; A0 =

2b0
H2
− c0

2H
, B0 =

c0
2H2

− b0
H3

,

while for k 6= 0

(50) ak(x3) = x3(Bk sinh(|k|/H x3)−Ak|k|/H cosh(|k|/H x3)) +Ak sinh(|k|/H x3),

where

Ak =
2((bk − ckH) sinh(|k|) + bk|k| cosh(|k|))

cosh(2|k|)− 2|k|2 − 1
;

Bk = 2
sinh(|k|)

(
bk|k|2/H + ck

)
− ck|k| cosh(|k|)

cosh(2|k|)− 2|k|2 − 1
.

Due to Remark 3.5, the Fourier components of w̃1 and ∂x3
w̃1 for x3 = H decay fast in k: more precisely,

for any integer ` there exists C` > 0, independent of H large, such that

(51)
∑
k∈Z2

|bk/H2|2 + |ck/H|2

1 + |k|`
≤ C`.

This will imply uniform convergence of the series (in k) of ŵ1 for x3 ∈ [0, 1] and of that of w̃1 − ŵ1 for
x3 ∈ [H − 1, H]. We indeed prove the following result.

16



Proposition 4.1 Let ŵ1 be as in (46). There exist fixed constants H0 and C0 such that for all H ≥ H0

|ŵ1| ≤ C0 in {0 ≤ x3 ≤ 1}; |w̃1 − ŵ1| ≤ C0 in {H − 1 ≤ x3 ≤ H}.

Proof. We first estimate the zero-mode a0 in (49). For x3 ∈ [0, 1], a0(x3) is clearly bounded since A0

and B0 are, due to Proposition 3.4.
Let us now pass to higher-order modes. We first notice that, since the denominators in Ak, Bk are

bounded below by C−1e2|k|, then

(52) |Ak| ≤ C(|bk|+H|ck|)|k|e−|k|; |Bk| ≤ C(|bk|/H + |ck|)|k|2e−|k|.

With a change of variables, we can write

(53) ak(x3) =

(
Ak +

H

|k|
Bk z

)
sinh z − zAk cosh z; z =

|k|
H
x3.

This function vanishes at z = 0 and has also vanishing first-order derivative at z = 0, while its second-
order derivative is given by

2
H

|k|
Bk cosh z +

H

|k|
Bkz sinh z −Ak(sinh z + z cosh z).

By a Taylor expansion in integral form, one finds that

|ak(x3)| ≤ Cz2ez
(
|Ak|+

H

|k|
|Bk|

)
; z =

|k|
H
x3,

which implies

|ak(x3)| ≤ C
(
|k|
H

)2

e
|k|
H

(
|Ak|+

H

|k|
|Bk|

)
; x3 ∈ [0, 1].

From (52), it follows that

|ak(x3)| ≤ C
(
|k|
H

)2

e
|k|
H (|bk|+H|ck|)|k|e−|k| ≤ C|k|3e−

1
2 |k|

(
|bk|
H2

+
|ck|
H

)
; x3 ∈ [0, 1],

so by (51) the series in (47) converges arbitrarily fast for x3 ∈ [0, 1]. This proves the first statement in
the proposition.

We turn next to the second assertion. It will be sufficient to control the second derivative in x3 of ŵ1.
Using (53), we have that

d2

dx23
ak(x3) =

(
dz

dx3

)2
d2

dz2
ak(x3)

=

(
|k|
H

)2 [
2
H

|k|
Bk cosh z −Ak sinh z + z

(
H

|k|
Bk sinh z −Ak cosh z

)]
.

To evaluate this quantity for x3 ∈ [H − 1, H], we write

2
H

|k|
Bk cosh z −Ak sinh z + z

(
H

|k|
Bk sinh z −Ak cosh z

)
=

[(
2
H

|k|
Bk −Ak

)
+ z

(
H

|k|
Bk −Ak

)]
sinh z +

(
2
H

|k|
Bk −Ak

)
e−z − z

(
H

|k|
Bk −Ak

)
e−z.

For x3 ∈ [H − 1, H], by (52) the latter expression can be bounded by

Czez
(
H

|k|
|Bk|+ |Ak|

)
≤ C|k|e|k|(|bk|+H|ck|)|k|e−|k| ≤ C|k|2(|bk|+H|ck|).
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The above formula for d2

dx2
3
ak(x3) then implies∣∣∣∣ d2dx23 ak(x3)

∣∣∣∣ ≤ C |k|4H4

d2

dx23
ak(x3); x3 ∈ [H − 1, H].

By (51) this function is uniformly bounded, giving the conclusion by the last estimate in (39) and by the
fact that w̃1 − ŵ1 vanishes and has zero normal derivative on the plane {x3 = H}.

We can now prove our main result.

Proof of Theorem 1.2. Let θ1, θ2 be as in (33), and let wi, i = 1, 2, be the solution of
∆2wi = ∆hθi in {0 ≤ x3 ≤ H};
wi = 0 on {x3 = 0} ∪ {x3 = H};
∂x3wi = 0 on {x3 = 0} ∪ {x3 = H}.

If w̃1 is as in (34) and ŵ1 as in (46), then by uniqueness w1 = w̃1 − ŵ1. Proposition 3.3 (recalling that
θ = θ1 for x3 ≤ H/2) and the first estimate in Proposition 4.1 imply that 〈θ w1〉 is uniformly bounded
for x3 ∈ (0, 1].

On the other hand, we could apply the second estimate in Proposition 4.1 to the function w2(x′, H−x3)
and again use the L∞-bound on θ to show that also 〈θ w2〉 is uniformly bounded for x3 ∈ (0, 1]. The
conclusion follows then from formula (10).

5 Appendix

In this appendix we collect some remarks to help the reader understand the proof of Proposition 2.3 and
to point out the elementary observations that allow us to adapt the original one for Theorem 33 in [8].
In fact this modification is already suggested by the proof of that result. We collect first some facts from
the book [27].

Lemma 5.1 ([27], page 62) Let Pt denote the Poisson kernel, see (13). Then its Fourier transform
has the expression

P̂t(ξ) = e−2πt|ξ|, ξ ∈ R2.

In particular, P̂t is exponentially decaying at infinity and is in the Schwartz space at infinity.

It is useful to recall the following definition.

Definition 5.2 Let µ be a measure on R3
+. Let us consider the Carleson box

T (x0, h) :=
{

(x, h) ∈ R2 × R | |x− x0| < h, 0 ≤ t < h
}
.

We say that µ is a Carleson measure if there is an absolute constant C1 such that for all h > 0

µ(T (x0, h)) ≤ C1h
2.

Recalling the definition of non-tangential maximal function in (17), we have the following result.

Lemma 5.3 ([27], page 236) Let F (x, t) be any measurable function on R3
+, and let µ be a Carleson

measure. Then, for 0 < p < +∞
ˆ
R3

+

|F (x, t)|pdµ ≤ C(p)C1

ˆ
R2

|NF |pdx,

where C1 is the constant in Definition 5.2 and and NF is the non-tangential maximal function of F .
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Figure 4: A Carleson box

The case p = 2 is employed in [8]. We will call bump functions approximate identities of the type

ϕt(x) =
1

tn
ϕ(x/t).

Even though Proposition 2.3 is stated for vectorial kernels, it will be enough to consider scalar ones. We
will employ as bump functions t∇hPt, where ∇hPt stands for the horizontal derivatives of the Poisson
kernel Pt on R2. The Fourier transform of this function when t = 1 is

ξjP̂ (ξ) = ξje
−2π|ξ|,

see e.g. [27, page 61]. We have the following estimates, for all multi-indices α

(54)

{
|∂αξ P̂ (ξ)| ≤ C(α)e−C(α)−1|ξ| for |ξ| ≥ 1;

|ξ|α|∂αξ P̂ (ξ)| ≤ C(α)|ξ| for |ξ| ≤ 1.

Thus the above inequalities imply the decay assumption in Theorem 33 of [8], reported in Remark 2.4.
The proof of Theorem 33 in [8] has a key step, namely Lemma 5 on page 151. Here one establishes the

theorem under the provisional assumption that the bump functions have compactly supported Fourier
transform, with the origin not lying in the support of the Fourier transform of any of the bump functions,
and also the origin not lying in the algebraic sum of the supports of the Fourier transform of the bump
functions.

In the general case where assumptions (54) hold true, the arguments on pages 152-153 in [8] reduce
matters to Lemma 5 there. We now make some remarks on the proof of Lemma 5, which is already
implicit in the proof displayed in [8], but that we now highlight. We collect real variable facts used in
Lemma 5 which are standard.

Lemma 5.4 For two functions ϕ,ψ ∈ L1(R2) ∩ L2(R2) one has

(i) ϕ̂ ∗ ψ(ξ) = ϕ̂(ξ)ψ̂(ξ);

(ii) ϕ̂ψ(ξ) = (ϕ̂ ∗ ψ̂)(ξ);

(iii) the support of ϕ̂ ∗ ψ̂ is contained in the algebraic sum of supp ϕ̂ and supp ψ̂.

In [8], one considers integrals of the type

ˆ ∞
0

(f ∗ ϕt)(x)(b ∗ ψt)(x)m(t)
dt

t
,

namely ˆ ∞
0

(F (·, t) ∗ ϕt)(x)(b ∗ ψt)(x)
dt

t
,
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with

(55) F (x′, t) = f(x′)m(t).

In our case, for Proposition 2.3, we need to estimate integrals of the type

ˆ ∞
0

(F (·, t) ∗ ϕt)(x)(b ∗ ψt)(x)
dt

t
,

with b ∈ L∞(R2) (or even BMO), ϕt = ψt and a more general dependence of F on t, compared to (55).

The latter integral is a paraproduct, see [8], Appendix I. To estimate the L2(R2)-norm of the above
expression, in [8] one proceeds via duality and consider, for h of class L2(R2), the operator

(56) h 7−→
ˆ
R2

h(x)

[ˆ ∞
0

(F (·, t) ∗ ϕt)(x)(b ∗ ψt)(x)m(t)
dt

t

]
dx.

The main idea of Lemma 5 in [8] (see page 151 there), under the above-mentioned assumptions on the

supports of ϕ̂ and ψ̂, is that one can write, for δ > 0

[(F (·, t) ∗ ϕt)(·)(b ∗ ψδt)(·)]m(t) as ψ3,t ∗ [(F (·, t) ∗ ϕt)(·)(b ∗ ψδt)(·)]m(t).

Here ψ3,t(x) = 1
t2ψ3(x/t) is a bump function for which ψ̂3 is compactly supported, smooth, such that

ψ̂3 ≡ 1 on supp ϕ̂(·) + supp ψ̂(δ ·) and with supp ψ̂3 contained either in a ball or in a proper annulus
around the origin. When applying then L2-duality in (56), one can then pass the convolution with ψ3,t

to h and use Littlewood-Paley estimates.
To explain these steps in more detail, consider the Fourier transform in x of

(57) (F (·, t) ∗ ϕt)(x)(b ∗ ψδt)(x)m(t).

By Lemma 5.4, this is given by

(58) [F̂ (ξ, t)ϕ̂t(ξ)] ∗ [b̂(ξ)ψ̂t(ξ)]m(t).

The point is now that the support of F̂ (ξ, t)ϕ̂t(ξ) lies in the support of ϕ̂t and the support of b̂(ξ)ψ̂t(ξ)

lies in the support of ψ̂t, and for this to hold it is irrelevant that F (x, t) depends on t or that there is the

extra factor m(t). Thus the support of (58) lies in the algebraic sum of the supports of ϕ̂t and ψ̂t.
By the above discussion, the dual pairing of h and the expression in (57) becomes

ˆ
R2

h(x)

ˆ ∞
0

ψ3,t ∗ [(F (·, t) ∗ ϕt)(b ∗ ψδt)](x)m(t)
dt

t
dx,

and after switching convolutions it can be written as

ˆ
R2

ˆ ∞
0

(ψ3,t ∗ h)(x)[(F (·, t) ∗ ϕt)(b ∗ ψδt)](x)m(t)
dt

t
dx.

Using the fact that m ∈ L∞ and the Cauchy-Schwarz inequality, this quantity can be bounded by(ˆ
R2

ˆ ∞
0

|(ψ3,t ∗ h)(x)|2 dt
t
dx

) 1
2

×
(ˆ

R2

ˆ ∞
0

|(F (·, t) ∗ ϕt)(x)|2|(b ∗ ψδt)(x)|2 dt
t
dx

) 1
2

.(59)

We apply Lemma 1 in [8] to the first term in the latter formula to conclude that it is bounded by a fixed
constant times ‖h‖L2(R2). To the second term we apply Lemma 5.3. Recall that we set

(F (·, t) ∗ ϕt)(x) = F̌ (x, t) :
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from Theorem 2.1 we see that |(b ∗ ψδt)(x)|2 dtt dx is a Carleson measure since b is in L∞, so the second
term in (59), using Lemma 5.3, can be bounded by(ˆ

R2

(NF̌ )2(x)dx

) 1
2

,

as desired. Notice that the bound is uniform in δ > 0 because of the scaling invariance in t of both dt
t

and the expression of NF̌ . For general kernels as in Proposition 2.3, see the comments before Lemma
5.4, we follow the arguments on pages 152-153 in [8].
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