Thinking and Problem Solving: Math in the Real World

Chloe Urbanski Wawrzyniak ceu11@math.rutgers.edu

Course Description

In this course, students will develop their problem-solving skills by working through a few of the many applications of Mathematics in the real world. Topics include

- Graph Theory
- Combinatorics and Probability
- Biology
- Game Theory
- Finance
- Cryptography

For a more detailed breakdown of the topics and schedule, see below.

Presentations

Students will choose an application of Mathematics which is either not discussed in the course or is only briefly mentioned to present about to their classmates. Examples include Alpha Go and other automated game-playing machines, map-making, error-correcting codes, special effects in movies, and data compression. No two students may present the same topic. Students will receive a list of possible topics to choose from but may choose a topic not on the list with approval from the instructor. More details on this assignment are provided in a second document.

Other Homework

Students will be assigned homework each night. Their solutions are to be handed in at the start of the next day's morning session. On some days, the homework will entail practice of that day's topics. On some days, however, the homework will be preparation for the next day's topics. Therefore, it is imperative that students complete the homework on time. If not, you will not be prepared for the next topic and will have difficulty getting the full benefit from the planned activities.

There is no assigned textbook for this course, so any assignments or notes will be provided by the instructor to the students. In most cases, the instructor will provide the students will printed copies. Students may also find all material posted to the instructor's website: <u>http://www.math.rutgers.edu/~ceu11</u>

Museum of Mathematics

In the afternoon of Thursday, July 26, we will be taking a field trip to the Museum of Mathematics in New York City. More details will be provided separately.

Schedule

Day	Morning	Afternoon
1	Graph Theory: Paths	Graph Theory: Proofs
7/17	Ice Breaker	Induction
	 Seven Bridges of Königsberg 	Parity and Cycles
	• What is a graph	Classification of Eulerian Circuits
2	Graph Theory: Spanning Trees	Graph Theory: Spanning Tree Algorithms
7/18	• Algorithms for finding minimizing spanning	Traveling Salesman Problem
	trees	
	 Applications to Utilities Companies 	
3	Graph Theory: Matrices	Graph Theory: Markov Chains
7/19	What is a matrix	Passing Beans Game
	Matrix arithmetic	Markov Chains as a Matrix
	Transition Matrices	
4	Graph Theory: Matching and Bipartite Graphs	Graph Theory: Matching, and Matrices
7/20	Matching Algorithms	 Matching algorithms on weighted graphs
	Bipartite Graphs	Matrix interpretation
5	Combinatorics: Counting Methods	Combinatorics: Counting Methods
7/23	Combinations	Binomial Coefficients
	Permutations	Pascal's Triangle
6	Probability: Introduction	Probability: Expected Value
7/24	Equally likely events	Venn Diagrams
	Discrete Probability Distributions	Expected Value
	Discrete Random Variables	Law of Large Numbers
7	Probability: Conditional Probability and	Probability: Applications
7/25	Independent Events	Games
	Conditional Probability	False Positives
	Bayes Theorem	Monty Hall
	Independent Events	The Birthday Problem
8	Computer Lab Day	MoMath
7/26	 Working on Presentations 	
9	Biology: Population Growth	Biology: Shapes of Nature
7/27	Exponential Growth	Surface Area to Volume Ratios
	Carrying Capacity	Fractals in Nature
	Logistic Growth	
10	Finance: Stocks and Investments	Finance: Loans
7/30	 What's My Interest? Activity 	Amortization tables in Excel
		Note: This class will be in a computer lab
11	Game Theory: Introduction	Game Theory: Nash Equilibrium
7/31	 Midday Lecture Series (Ayas) 11:10-12 	Finding Nash Equilibrium
	Debrief lecture	Prisoner's Dilemma
12	Cryptography: Basic Cyphers	Number Theory: Introduction
8/1	Transposition Cyphers	Modular Arithmetic
	Substitution Cyphers	Fast Modular Exponentiation
13	Number Theory: Introduction	Cryptography: RSA and Public Key Encryption
8/2	Review Fast Modular Exponentiation	 Sending Messages using Public Key
	Totient Function	Encryption
14	Presentations	Presentations
8/3		