Ovals and Width

An Introduction to Differential Geometry

Chloe Urbanski Wawrzyniak
Summer 2018

Columbia University High School Program

These slides are based on notes from an undergraduate course in Differential Geometry that I took at Indiana Universtiy, Bloomington. I'd like to thank Professor Bruce Solomon for an exciting introduction to the field and for the notes he provided, which I still reference today, years after graduation.

Preliminaries

Throughout this lecture, we will use c to denote the standard parametrization of the unit circle. Namely,

$$
c(t)=(\cos (t), \sin (t))
$$

One can prove (though, we will not do so here) that any curve with nonvanishing speed can be reparametrized to have unit speed. So, for this lecture, we will always assume that our curves has unit speed.

Ovals

Periodic and Simple Parametrizations

Definition

A parametrization α is called periodic is there is a number P such that $\alpha(t+P)=\alpha(t)$ for all t. The image of a periodic parametrization is called a closed curve.

Periodic and Simple Parametrizations

Definition

A parametrization α is called periodic is there is a number P such that $\alpha(t+P)=\alpha(t)$ for all t. The image of a periodic parametrization is called a closed curve.

A closed curve is simple if the curve has no self-intersections, except at the end points.

Periodic and Simple Parametrizations

Definition

A parametrization α is called periodic is there is a number P such that $\alpha(t+P)=\alpha(t)$ for all t. The image of a periodic parametrization is called a closed curve.

A closed curve is simple if the curve has no self-intersections, except at the end points.

Which examples from yesterday (morning or afternoon) were periodic?
Which were periodic and simple?

Ovals

Definition

An oval is a simple closed curve with a parametrization whose curvature κ is never 0 .

Ovals

Definition

An oval is a simple closed curve with a parametrization whose curvature κ is never 0 .

Which examples from yesterday (morning or afternoon) were ovals?

Ovals

Definition

An oval is a simple closed curve with a parametrization whose curvature κ is never 0 .

Which examples from yesterday (morning or afternoon) were ovals?
Note that a simple closed curve whose curvature is always negative can be reparametrized to have positive curvature. So, we will typically assume it always has positive curvature.

Geometric Description

Geometrically, $\kappa \neq 0$ ensures that an arc has no inflection points or "flat" points.

Reparametrization

We want to parametrize ovals in a special way. Yesterday, we discussed the function $\varphi(t)$, the angle between $\alpha^{\prime}(t)$ and the $(1,0)$ direction.

Reparametrization

We want to parametrize ovals in a special way. Yesterday, we discussed the function $\varphi(t)$, the angle between $\alpha^{\prime}(t)$ and the $(1,0)$ direction.

Today, we're going to use that idea, but with a slight modification. We are going to parametrize by the angle ϕ of $\alpha^{\prime}(t)$ with the $(0,1)$-direction.

Reparametrization

We want to parametrize ovals in a special way. Yesterday, we discussed the function $\varphi(t)$, the angle between $\alpha^{\prime}(t)$ and the $(1,0)$ direction.

Today, we're going to use that idea, but with a slight modification. We are going to parametrize by the angle ϕ of $\alpha^{\prime}(t)$ with the (0,1)-direction.

Thus, $\phi=\varphi-\pi / 2$, where φ is the angle with $(0,1)$, whose derivative (according to the Proposition from yesterday) is the curvature. The same holds for the derivative of ϕ :

Reparametrization

We want to parametrize ovals in a special way. Yesterday, we discussed the function $\varphi(t)$, the angle between $\alpha^{\prime}(t)$ and the $(1,0)$ direction.

Today, we're going to use that idea, but with a slight modification. We are going to parametrize by the angle ϕ of $\alpha^{\prime}(t)$ with the (0,1)-direction.

Thus, $\phi=\varphi-\pi / 2$, where φ is the angle with $(0,1)$, whose derivative (according to the Proposition from yesterday) is the curvature. The same holds for the derivative of ϕ :

Reparametrization

We want to parametrize ovals in a special way. Yesterday, we discussed the function $\varphi(t)$, the angle between $\alpha^{\prime}(t)$ and the $(1,0)$ direction.

Today, we're going to use that idea, but with a slight modification. We are going to parametrize by the angle ϕ of $\alpha^{\prime}(t)$ with the (0,1)-direction.

Thus, $\phi=\varphi-\pi / 2$, where φ is the angle with (0,1), whose derivative (according to the Proposition from yesterday) is the curvature. The same holds for the derivative of ϕ :

$$
\phi^{\prime}=(\varphi-\pi / 2)^{\prime}
$$

Reparametrization

We want to parametrize ovals in a special way. Yesterday, we discussed the function $\varphi(t)$, the angle between $\alpha^{\prime}(t)$ and the $(1,0)$ direction.

Today, we're going to use that idea, but with a slight modification. We are going to parametrize by the angle ϕ of $\alpha^{\prime}(t)$ with the (0,1)-direction.

Thus, $\phi=\varphi-\pi / 2$, where φ is the angle with (0,1), whose derivative (according to the Proposition from yesterday) is the curvature. The same holds for the derivative of ϕ :

$$
\phi^{\prime}=(\varphi-\pi / 2)^{\prime}=\varphi^{\prime}
$$

Reparametrization

We want to parametrize ovals in a special way. Yesterday, we discussed the function $\varphi(t)$, the angle between $\alpha^{\prime}(t)$ and the $(1,0)$ direction.

Today, we're going to use that idea, but with a slight modification. We are going to parametrize by the angle ϕ of $\alpha^{\prime}(t)$ with the (0,1)-direction.

Thus, $\phi=\varphi-\pi / 2$, where φ is the angle with (0,1), whose derivative (according to the Proposition from yesterday) is the curvature. The same holds for the derivative of ϕ :

$$
\phi^{\prime}=(\varphi-\pi / 2)^{\prime}=\varphi^{\prime}=\kappa
$$

Support Parametrizations

Since we are working on ovals, we know the curvature is always positive.

Support Parametrizations

Since we are working on ovals, we know the curvature is always positive. We just showed that $\phi^{\prime}=\kappa$, so the function $\phi(t)$ is always increasing. So, it has an inverse: $\phi^{-1}(\theta)$.

Support Parametrizations

Since we are working on ovals, we know the curvature is always positive. We just showed that $\phi^{\prime}=\kappa$, so the function $\phi(t)$ is always increasing. So, it has an inverse: $\phi^{-1}(\theta)$.

So, we use the following parametrization of the oval:

$$
\sigma(\theta)=\alpha\left(\phi^{-1}(\theta)\right)
$$

Support Parametrizations

Since we are working on ovals, we know the curvature is always positive. We just showed that $\phi^{\prime}=\kappa$, so the function $\phi(t)$ is always increasing. So, it has an inverse: $\phi^{-1}(\theta)$.

So, we use the following parametrization of the oval:

$$
\sigma(\theta)=\alpha\left(\phi^{-1}(\theta)\right)
$$

This "angular" reparametrization σ is called the support parametrization of the oval. Note that it is 2π periodic.

Curvature and the Support Parametrization

Note that at a particular $t=\phi^{-1}(\theta)$, the velocity of our unit-speed arc α forms angle θ with $(0,1)$.

Curvature and the Support Parametrization

Note that at a particular $t=\phi^{-1}(\theta)$, the velocity of our unit-speed arc α forms angle θ with $(0,1)$. So, $\alpha^{\prime}\left(\phi^{-1}(\theta)\right)=$

Curvature and the Support Parametrization

Note that at a particular $t=\phi^{-1}(\theta)$, the velocity of our unit-speed arc α forms angle θ with $(0,1)$. So, $\alpha^{\prime}\left(\phi^{-1}(\theta)\right)=(-\sin \theta, \cos \theta)=c^{\prime}(\theta)$.

Curvature and the Support Parametrization

Note that at a particular $t=\phi^{-1}(\theta)$, the velocity of our unit-speed arc α forms angle θ with $(0,1)$. So, $\alpha^{\prime}\left(\phi^{-1}(\theta)\right)=(-\sin \theta, \cos \theta)=c^{\prime}(\theta)$.
Since we also have that $\phi^{\prime}(t)=\kappa(t)$, we have from the chain rule that

$$
\sigma^{\prime}(\theta)=
$$

Curvature and the Support Parametrization

Note that at a particular $t=\phi^{-1}(\theta)$, the velocity of our unit-speed arc α forms angle θ with $(0,1)$. So, $\alpha^{\prime}\left(\phi^{-1}(\theta)\right)=(-\sin \theta, \cos \theta)=c^{\prime}(\theta)$.
Since we also have that $\phi^{\prime}(t)=\kappa(t)$, we have from the chain rule that

$$
\sigma^{\prime}(\theta)=c^{\prime}(\theta)\left(\phi^{-1}\right)^{\prime}(\theta)=\frac{c^{\prime}(\theta)}{\phi^{\prime}(t)}=\frac{c^{\prime}(\theta)}{\kappa\left(\phi^{-1}(\theta)\right)}
$$

Curvature and the Support Parametrization

Proposition

Every oval has a 2π periodic support parametrization σ that satisfies

$$
\sigma^{\prime}(\theta)=\frac{c^{\prime}(\theta)}{\kappa\left(\phi^{-1}(\theta)\right)}
$$

This parametrization is called the support parametrization.

Width

Width

Definition

The θ-width W_{θ} of the oval support-parametrized by θ as the distance between its tangent lines at $\sigma(\theta)$ and at $\sigma(\theta+\pi)$,

Width

Definition

The θ-width W_{θ} of the oval support-parametrized by θ as the distance between its tangent lines at $\sigma(\theta)$ and at $\sigma(\theta+\pi)$, which we can compute as

$$
W_{\theta}=\sigma(\theta) \cdot c(\theta)-\sigma(\theta+\pi) \cdot c(\theta)
$$

Where - represents the dot product of two vectors. Namely, $\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=x_{1} x_{2}+y_{1} y_{2}$.

Support Functions

Observe that $c(\theta+\pi)=$

Support Functions

Observe that $c(\theta+\pi)=-c(\theta)$, so we can more elegantly express the θ-width of the oval in terms of the function $h(\theta)=\sigma(\theta) \cdot c(\theta)$ as

Support Functions

Observe that $c(\theta+\pi)=-c(\theta)$, so we can more elegantly express the θ-width of the oval in terms of the function $h(\theta)=\sigma(\theta) \cdot c(\theta)$ as

$$
W_{\theta}=h(\theta)+h(\theta+\pi)
$$

Support Functions

Observe that $c(\theta+\pi)=-c(\theta)$, so we can more elegantly express the θ-width of the oval in terms of the function $h(\theta)=\sigma(\theta) \cdot c(\theta)$ as

$$
W_{\theta}=h(\theta)+h(\theta+\pi)
$$

We call h the support function of the curve.

