Curves

An Introduction to Differential Geometry

Chloe Urbanski Wawrzyniak Summer 2018

Columbia University High School Program

- 1. What is a Curve?
- 2. Velocity and Speed
- 3. Curvature

What is a Curve?

How would you define a **curve**?

How would you define a curve?

For simplicity, we will restrict our attention to curves in 2-dimensions.

An **arc** in the plane is the image of a function $\alpha(t) = (\alpha_1(t), \alpha_2(t))$ whose domain is an interval (a, b). We call α the **parametrization** of the curve.

An **arc** in the plane is the image of a function $\alpha(t) = (\alpha_1(t), \alpha_2(t))$ whose domain is an interval (a, b). We call α the **parametrization** of the curve.

Example

 $\alpha(t) = (t, t^2), \ -2 \le t \le 2$

An **arc** in the plane is the image of a function $\alpha(t) = (\alpha_1(t), \alpha_2(t))$ whose domain is an interval (a, b). We call α the **parametrization** of the curve.

Example

 $\alpha(t) = (t, t^2), \ -2 \le t \le 2$

Example

 $lpha(t) = (\cos(t), \sin(t)), \ 0 \le t \le 2\pi$

Draw the curves given by the following parametrizations.

1.
$$\alpha(t) = (0, 2t), \ 0 \le t \le 1$$

2. $\alpha(t) = (0, t), \ 0 \le t \le 2$
3. $\alpha(t) = (t, -t), \ -1 \le t \le 1$
4. $\alpha(t) = (3\cos(t), 3\sin(t)), \ 0 \le t \le 2\pi$
5. $\alpha(t) = (t\cos(t), t\sin(t)), \ 0 \le t \le 4\pi$.
6. $\alpha(t) = (\cos(t), 2\sin(t)), \ 0 \le t \le 2\pi$

Velocity and Speed

Definition The **velocity vector** of a curve α at t_0 is

 $\alpha'(t_0) = (\alpha'_1(t_0), \alpha'_2(t_0))$

Definition The **velocity vector** of a curve α at t_0 is

$$\alpha'(t_0) = (\alpha'_1(t_0), \alpha'_2(t_0))$$

and the **speed** at t_0 is $|\alpha'(t_0)| = \sqrt{(\alpha'_1(t_0))^2 + (\alpha'_2(t_0))^2}$.

Compute the velocity vectors and speeds of the examples from before, copied below.

1.
$$\alpha(t) = (0, 2t), \ 0 \le t \le 1$$

2. $\alpha(t) = (0, t), \ 0 \le t \le 2$
3. $\alpha(t) = (t, -t), \ -1 \le t \le 1$
4. $\alpha(t) = (3\cos(t), 3\sin(t)), \ 0 \le t \le 2\pi$
5. $\alpha(t) = (t\cos(t), t\sin(t)), \ 0 \le t \le 4\pi$.
6. $\alpha(t) = (\cos(t), 2\sin(t)), \ 0 \le t \le 2\pi$

Curvature

We will restrict our attention to curves whose speed is never 0, because that allows us to study its curvature:

We will restrict our attention to curves whose speed is never 0, because that allows us to study its curvature:

Definition

The **curvature** of the curve α at the point t_0 is

$$\kappa(t_0) = rac{lpha_1'(t_0)lpha_2''(t_0) - lpha_2'(t_0) lpha_1''(t_0)}{\left|lpha'(t_0)
ight|^3}$$

Compute the curvature of the curves we've been looking at, which are copied below.

1.
$$\alpha(t) = (0, 2t), \ 0 \le t \le 1$$

2. $\alpha(t) = (0, t), \ 0 \le t \le 2$
3. $\alpha(t) = (t, -t), \ -1 \le t \le 1$
4. $\alpha(t) = (3\cos(t), 3\sin(t)), \ 0 \le t \le 2\pi$
5. $\alpha(t) = (t\cos(t), t\sin(t)), \ 0 \le t \le 4\pi$.
6. $\alpha(t) = (\cos(t), 2\sin(t)), \ 0 \le t \le 2\pi$

We say a curve α has **unit speed** if $|\alpha'(t)| = 1$.

Proposition

Suppose $\alpha(t) = (\alpha_1(t), \alpha_2(t))$ is a planar arc with unit speed. Define $\varphi(t)$ as the angle between $\alpha'(t)$ and (1, 0). Then,

 $\kappa(t) = \varphi'(t)$

Compute $\varphi(t)$ for each of the curves that we've been looking at. Confirm for each one that $\varphi'(t) = \kappa(t)$.

1.
$$\alpha(t) = (0, 2t), \ 0 \le t \le 1$$

2. $\alpha(t) = (0, t), \ 0 \le t \le 2$
3. $\alpha(t) = (t, -t), \ -1 \le t \le 1$
4. $\alpha(t) = (3\cos(t), 3\sin(t)), \ 0 \le t \le 2\pi$
5. $\alpha(t) = (t\cos(t), t\sin(t)), \ 0 \le t \le 4\pi$.
6. $\alpha(t) = (\cos(t), 2\sin(t)), \ 0 \le t \le 2\pi$