Curves

An Introduction to Differential Geometry

Chloe Urbanski Wawrzyniak
Summer 2018
Columbia University High School Program

Table of contents

1. What is a Curve?
2. Velocity and Speed
3. Curvature

What is a Curve?

What is a Curve?

How would you define a curve?

What is a Curve?

How would you define a curve?

For simplicity, we will restrict our attention to curves in 2-dimensions.

What is a Curve?

Definition

An arc in the plane is the image of a function $\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t)\right)$ whose domain is an interval (a, b). We call α the parametrization of the curve.

What is a Curve?

Definition

An arc in the plane is the image of a function $\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t)\right)$ whose domain is an interval (a, b). We call α the parametrization of the curve.

Example

$\alpha(t)=\left(t, t^{2}\right),-2 \leq t \leq 2$

What is a Curve?

Definition

An arc in the plane is the image of a function $\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t)\right)$ whose domain is an interval (a, b). We call α the parametrization of the curve.

Example

$\alpha(t)=\left(t, t^{2}\right),-2 \leq t \leq 2$

Example

$\alpha(t)=(\cos (t), \sin (t)), 0 \leq t \leq 2 \pi$

More Examples

Draw the curves given by the following parametrizations.

1. $\alpha(t)=(0,2 t), 0 \leq t \leq 1$
2. $\alpha(t)=(0, t), 0 \leq t \leq 2$
3. $\alpha(t)=(t,-t),-1 \leq t \leq 1$
4. $\alpha(t)=(3 \cos (t), 3 \sin (t)), 0 \leq t \leq 2 \pi$
5. $\alpha(t)=(t \cos (t), t \sin (t)), 0 \leq t \leq 4 \pi$.
6. $\alpha(t)=(\cos (t), 2 \sin (t)), 0 \leq t \leq 2 \pi$

Velocity and Speed

Velocity and Speed

Definition

The velocity vector of a curve α at t_{0} is

$$
\alpha^{\prime}\left(t_{0}\right)=\left(\alpha_{1}^{\prime}\left(t_{0}\right), \alpha_{2}^{\prime}\left(t_{0}\right)\right)
$$

Velocity and Speed

Definition

The velocity vector of a curve α at t_{0} is

$$
\alpha^{\prime}\left(t_{0}\right)=\left(\alpha_{1}^{\prime}\left(t_{0}\right), \alpha_{2}^{\prime}\left(t_{0}\right)\right)
$$

and the speed at t_{0} is $\left|\alpha^{\prime}\left(t_{0}\right)\right|=\sqrt{\left(\alpha_{1}^{\prime}\left(t_{0}\right)\right)^{2}+\left(\alpha_{2}^{\prime}\left(t_{0}\right)\right)^{2}}$.

Examples

Compute the velocity vectors and speeds of the examples from before, copied below.

1. $\alpha(t)=(0,2 t), 0 \leq t \leq 1$
2. $\alpha(t)=(0, t), 0 \leq t \leq 2$
3. $\alpha(t)=(t,-t),-1 \leq t \leq 1$
4. $\alpha(t)=(3 \cos (t), 3 \sin (t)), 0 \leq t \leq 2 \pi$
5. $\alpha(t)=(t \cos (t), t \sin (t)), 0 \leq t \leq 4 \pi$.
6. $\alpha(t)=(\cos (t), 2 \sin (t)), 0 \leq t \leq 2 \pi$

Curvature

Curvature

We will restrict our attention to curves whose speed is never 0, because that allows us to study its curvature:

Curvature

We will restrict our attention to curves whose speed is never 0 , because that allows us to study its curvature:

Definition

The curvature of the curve α at the point t_{0} is

$$
\kappa\left(t_{0}\right)=\frac{\alpha_{1}^{\prime}\left(t_{0}\right) \alpha_{2}^{\prime \prime}\left(t_{0}\right)-\alpha_{2}^{\prime}\left(t_{0}\right) \alpha_{1}^{\prime \prime}\left(t_{0}\right)}{\left|\alpha^{\prime}\left(t_{0}\right)\right|^{3}}
$$

Examples

Compute the curvature of the curves we've been looking at, which are copied below.

1. $\alpha(t)=(0,2 t), 0 \leq t \leq 1$
2. $\alpha(t)=(0, t), 0 \leq t \leq 2$
3. $\alpha(t)=(t,-t),-1 \leq t \leq 1$
4. $\alpha(t)=(3 \cos (t), 3 \sin (t)), 0 \leq t \leq 2 \pi$
5. $\alpha(t)=(t \cos (t), t \sin (t)), 0 \leq t \leq 4 \pi$.
6. $\alpha(t)=(\cos (t), 2 \sin (t)), 0 \leq t \leq 2 \pi$

Curvature and Angles

Definition

We say a curve α has unit speed if $\left|\alpha^{\prime}(t)\right|=1$.

Proposition

Suppose $\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t)\right)$ is a planar arc with unit speed. Define $\varphi(t)$ as the angle between $\alpha^{\prime}(t)$ and $(1,0)$. Then,

$$
\kappa(t)=\varphi^{\prime}(t)
$$

Examples

Compute $\varphi(t)$ for each of the curves that we've been looking at. Confirm for each one that $\varphi^{\prime}(t)=\kappa(t)$.

1. $\alpha(t)=(0,2 t), 0 \leq t \leq 1$
2. $\alpha(t)=(0, t), 0 \leq t \leq 2$
3. $\alpha(t)=(t,-t),-1 \leq t \leq 1$
4. $\alpha(t)=(3 \cos (t), 3 \sin (t)), 0 \leq t \leq 2 \pi$
5. $\alpha(t)=(t \cos (t), t \sin (t)), 0 \leq t \leq 4 \pi$.
6. $\alpha(t)=(\cos (t), 2 \sin (t)), 0 \leq t \leq 2 \pi$
