Introduction to Curves in Mathematica

Chloe Wawrzyniak

Summer 2018

1 Plotting Curves

Use the function ParametricPlot to graph the following curves:

- 1. $c(t) = (\cos(t), \sin(t))$ where $0 \le t \le 2\pi$
- 2. $\alpha(t) = (2\cos(t), \sin(2t))$ where $0 \le t \le 2\pi$
- 3. $\alpha(t) = (t\sin(t), t\cos(t))$ where $0 \le t \le 6\pi$
- 4. $\alpha(t) = (t, \sin(t))$ where $-2\pi \le t \le 2\pi$
- 5. $\alpha(t) = (3\cos(t), 2\sin(t)), \ 0 \le t \le 2\pi$
- 6. $\alpha(t) = (t^3 t, t^2), -5 \le t \le 5$

Challenge: Plot 3 circles all centered at 0 and of radii 1, 2, and 3 in the same image. Don't forget to add a key to your graphic!

2 Manipulate

Use the Manipulate function to create an interactive graph of the curve $\alpha(t) = (t, af(pt))$ where a, p and f are all variables to be manipulated and $-2\pi \leq t \leq 2\pi$. Set a to go between -2 and 2. Set p to go between -10 and 10. Set f to be either sin, cos, or tan.

3 Curvature

Create a function called circlecurvature[t] to calculate the curvature of the unit circle $c(t) = (\cos(t), \sin(t))$ at a point t.

Compute the curvature at t = 0, $t = \pi/2$, and at any other point of your choice.

Challenge: Create two input function f1 and f2. Start by setting these equal to cos and sin, respectively. Then, use Dynamic to create a function which computes the curvature of the curve $\alpha(t) = (f1(t), f2(t))$ and updates automatically as you update the functions f_1 and f_2 .

4 Curves in 3D

In this course, we will focus on curves in the 2-dimensional plane, but curves that move in 3 dimensions are also interesting to look at. Try plotting the following 3-dimensional curves:

- 1. $\alpha(t) = (t, \cos(t), \sin(t)), 0 \le t \le 4\pi$
- 2. $\alpha(t) = (\sin(t), \cos(t), \cos(8t)), \ 0 \le t \le 4\pi$
- 3. $\alpha(t) = (t\cos(t), t\sin(t), t), \ 0 \le t \le 4\pi$
- 4. $\alpha(t) = (t, t^2, \cos(t)), \ 0 \le t \le 2\pi$