Introduction to Curves in Mathematica

Chloe Wawrzyniak

Summer 2018

1 Plotting Curves

Use the function ParametricPlot to graph the following curves:

1. $c(t)=(\cos (t), \sin (t))$ where $0 \leq t \leq 2 \pi$
2. $\alpha(t)=(2 \cos (t), \sin (2 t))$ where $0 \leq t \leq 2 \pi$
3. $\alpha(t)=(t \sin (t), t \cos (t))$ where $0 \leq t \leq 6 \pi$
4. $\alpha(t)=(t, \sin (t))$ where $-2 \pi \leq t \leq 2 \pi$
5. $\alpha(t)=(3 \cos (t), 2 \sin (t)), 0 \leq t \leq 2 \pi$
6. $\alpha(t)=\left(t^{3}-t, t^{2}\right),-5 \leq t \leq 5$

Challenge: Plot 3 circles all centered at 0 and of radii 1,2 , and 3 in the same image. Don't forget to add a key to your graphic!

2 Manipulate

Use the Manipulate function to create an interactive graph of the curve $\alpha(t)=(t, a f(p t))$ where a, p and f are all variables to be manipulated and $-2 \pi \leq t \leq 2 \pi$. Set a to go between -2 and 2 . Set p to go between -10 and 10 . Set f to be either sin, cos, or \tan.

3 Curvature

Create a function called circlecurvature $[t]$ to calculate the curvature of the unit circle $c(t)=$ $(\cos (t), \sin (t))$ at a point t.

Compute the curvature at $t=0, t=\pi / 2$, and at any other point of your choice.
Challenge: Create two input function $f 1$ and $f 2$. Start by setting these equal to cos and sin, respectively. Then, use Dynamic to create a function which computes the curvature of the curve $\alpha(t)=(f 1(t), f 2(t))$ and updates automatically as you update the functions f_{1} and f_{2}.

4 Curves in 3D

In this course, we will focus on curves in the 2-dimensional plane, but curves that move in 3 dimensions are also interesting to look at. Try plotting the following 3-dimensional curves:

1. $\alpha(t)=(t, \cos (t), \sin (t)), 0 \leq t \leq 4 \pi$
2. $\alpha(t)=(\sin (t), \cos (t), \cos (8 t)), 0 \leq t \leq 4 \pi$
3. $\alpha(t)=(t \cos (t), t \sin (t), t), 0 \leq t \leq 4 \pi$
4. $\alpha(t)=\left(t, t^{2}, \cos (t)\right), 0 \leq t \leq 2 \pi$
