Find The Error Problems

Chloe Wawrzyniak

Describe the error(s) in each of the following "proofs". It is worth noting that some of the below propositions are true, while others are not. You are *not* being asked to determine whether the proposition is true. You are being asked to find the error in the "proofs", regardless of the validity of the proposition.

Proposition 0.1. For all integers k, if k > 0 then $k^2 + 2k + 1$ is composite.

Proof. Suppose k is any integer such that k > 0. If $k^2 + 2k + 1$ is composite, then $k^2 + 2k + 1 = rs$ for some integers r and s such that

$$1 < r < (k^2 + 2k + 1)$$

and

$$1 < s < (k^2 + 2k + 1).$$

Since $k^2 + 2k + 1 = rs$ where both r and s are strictly between 1 and $k^2 + 2k + 1$, then $k^2 + 2k + 1$ is not prime. Hence, $k^2 + 2k + 1$ is composite, as was to be shown.

Proposition 0.2. The sum of any two even integers equals 4k for some integer k.

Proof. Suppose m and n are any two even integers. By definition of even, m = 2k for some integer k and n = 2k for some integer k. By substitution,

$$m + n = (2k) + (2k) = 4k$$

This is what was to be shown.

Proposition 0.3. For all integers k, if k > 0 then $k^2 + 2k + 1$ is composite.

Proof. For k = 2, $k^2 + 2k + 1 = 2^2 + 2 \cdot 2 + 1 = 9$. But $9 = 3 \cdot 3$, and so 9 is composite. Hence the proposition is true.

Proposition 0.4. The difference between any odd integer and any even integer is odd.

Proof. Suppose n is any odd integer, and m is any even integer. By definition of odd, n = 2k + 1 where k is an integer, and by definition of even, m = 2k where k is any integer. Then

$$n - m = (2k + 1) - 2k = 1.$$

But 1 is odd. Therefore, the difference between any odd integer and any even integer is odd. $\hfill \Box$

Proposition 0.5. The sum of any two rational numbers is a rational number.

Proof. Suppose r and s are rational numbers. Then $r = \frac{a}{b}$ and $s = \frac{c}{d}$ for some integers a, b, c, d with $b \neq 0$ and $d \neq 0$ by definition of rational. Then

$$r+s = \frac{a}{b} + \frac{c}{d}.$$

But this is a sum of two fractions, which is a fraction. So r + s is a rational number since a rational number is a fraction.

Proposition 0.6. For any integer n, $n^2 + 5$ is not divisible by 4.

Proof. If n is even, then n = 2k for some integer k. So,

$$n^{2} + 5 = (2k)^{2} + 5 = 4k^{2} + 5 = 4(k^{2} + 1) + 1$$

which leaves a remainder of 1 when divided by 4. Therefore $n^2 + 5$ is not divisible by 4.

Proposition 0.7. Let $a, b, c \in \mathbb{Z}$. Then ac|bc if and only if a|b.

Proof. If ac|bc, then

$$bc = ack \tag{1}$$

for some $k \in \mathbb{Z}$. Then, dividing both sides of equation (1) by c, we obtain

$$b = ak.$$

Since $k \in \mathbb{Z}$, we see that a|b, as desired.

Note that the proof of Proposition 0.7 has two errors. One is more obvious than the other.

Proposition 0.8. If $x \in \mathbb{R}$, then $\frac{4}{x(4-x)} \ge 1$.

Proof. Observe that since $x - 2 \in \mathbb{R}$,

$$(x-2)^2 \ge 0$$

We can rearrange the above equation to get our desired result:

$$(x-2)^2 \ge 0$$
$$x^2 - 4x + 4 \ge 0$$
$$x^2 - 4x \ge -4$$
$$x(4-x) \le 4$$
$$4 - x \le \frac{4}{x}$$
$$1 \le \frac{4}{x(4-x)}$$

Proposition 0.9. $\forall n \in \mathbb{Z}$, if n is odd, then $\frac{n-1}{2}$ is odd.

Proof. Let $n \in \mathbb{Z}$ be odd. Then, n = 2k + 1 for some $k \in \mathbb{Z}$. So,

$$\frac{n-1}{2} = \frac{2k+1-1}{2} = k,$$

which is clearly odd.

Proposition 0.10. Let $a, b, c \in \mathbb{Z}$. If c|ab, then c|a and c|b.

Proof. If c|a then a = ck for some $k \in \mathbb{Z}$, and if c|b, then $b = c\ell$ for some $\ell \in \mathbb{Z}$. So,

$$ab=(ck)(c\ell)=c(ck\ell).$$

Since $ck\ell \in \mathbb{Z}$, this shows that c|ab.

Proposition 0.11. Every integer is rational.

Proof. Suppose not. Then, every integer is irrational. But then $1 = \frac{1}{1}$, which is an integer, is rational. This is a contradiction. Hence, every integer must be rational.

Proposition 0.12. Suppose $a, b, c \in \mathbb{Z}$. If a|b and a|c, then 2a|(b+c).

Proof. If a divides b, then b = ak for some $k \in \mathbb{Z}$. Since a divides c, then c = ak for some $k \in \mathbb{Z}$. Therefore,

$$b + c = (ak) + (ak) = (2a)k.$$

Since $k \in \mathbb{Z}$, this shows that 2a|(b+c).

Proposition 0.13. $\forall x \in \mathbb{Z}, x^2 + x \text{ is even.}$

Proof. Suppose $x \in \mathbb{Z}$ is even. Then, by definition, x = 2k for some $k \in \mathbb{Z}$. Therefore,

$$x^{2} + x = (2k)^{2} + (2k)$$
$$= 4k^{2} + 2k$$
$$= 2(2k^{2} + k).$$

Since $2k^2 + k \in \mathbb{Z}$, this shows that $x^2 + x$ is even.

Proposition 0.14. $\exists x \in \mathbb{Q} \text{ such that } \forall k \in \mathbb{Z}, |x-k| > \frac{1}{4}.$

Proof. Let $x = \frac{1}{2} \in \mathbb{Q}$ and $k = 2 \in \mathbb{Z}$. Then

$$|x-k| = \left|\frac{1}{2} - 2\right| = \frac{3}{2} > \frac{1}{4}$$

Proposition 0.15. If k is any odd integer and m is any even integer, then $m^2 - k^2$ is odd.

Proof. Since k is even, k = 2a for some $a \in \mathbb{Z}$. Since m is odd, m = 2a + 1 for some $a \in \mathbb{Z}$. Then,

$$m^{2} - k^{2} = (2a + 1)^{2} - (2a)^{2}$$

= $4a^{2} + 4a + 1 - 4a^{2}$
= $4a + 1$
= $2(2a) + 1$.

Since $2a \in \mathbb{Z}$, by definition $m^2 - k^2$ is odd.

Proposition 0.16. An integer x is odd if and only if x = 2k - 1 for some $k \in \mathbb{Z}$.

Proof. If x = 2k - 1 for some $k \in \mathbb{Z}$, we can rewrite this as

$$x = 2k - 1$$

= 2(k - 1) + 2 - 1
= 2(k - 1) + 1.

Since $(k-1) \in \mathbb{Z}$, this shows that x is odd.

Proposition 0.17. Let $r \in \mathbb{Q}$ and $s \in \mathbb{R}$. If $rs \in \mathbb{Q}$, then $s \in \mathbb{Q}$.

Proof. Since $r \in \mathbb{Q}$, $\exists a, b \in \mathbb{Z}$ with $b \neq 0$ such that

$$r = \frac{a}{b}.$$

Then, if $s \in \mathbb{Q}$, $\exists c, d \in \mathbb{Z}$ with $d \neq 0$ such that

$$s = \frac{c}{d}.$$

So,

$$rs = \frac{a}{b}\frac{c}{d} = \frac{ac}{bd}.$$

Since $ac, bd \in \mathbb{Z}$ with $bd \neq 0$, this shows that $rs \in \mathbb{Q}$.

Proposition 0.18. If a and b are both even integers, then $a^2 + b^2$ is divisible by 8.

Proof. Since a and b are even integers, a = 2x for some $x \in \mathbb{Z}$ and b = 2x for some $x \in \mathbb{Z}$. So,

$$a^{2} + b^{2} = (2x)^{2} + (2x)^{2}$$
$$= 4x^{2} + 4x^{2}$$
$$= 8x^{2}$$

Since $x^2 \in \mathbb{Z}$, this shows that $a^2 + b^2$ is divisible by 8.

Proposition 0.19. If a and b are even integers, then $a^4 + b^4 + 32$ is divisible by 8.

Proof. Suppose a is an even integer, which we can take to be 2, and suppose b is an even integer, which we can take to be 4. Then

$$a^4 + b^4 + 32 = 2^4 + 4^2 + 32 = 16 + 256 + 32 = 304.$$

Since 304 is divisible by 8 (namely, 304 = 8*38), we are done.

Proposition 0.20. Take $n \in \mathbb{N}$. Then $n^3 + 1$ is composite.

Proof. Suppose $n^3 + 1$ is prime. For notational simplicity, call it p. Then, since p is prime, it has no divisors. But p is an integer, and 1 divides every integer, so p has a divisor. Therefore, we have shown that p has a divisor and that p has no divisors, which is a contradiction. Therefore, $n^3 + 1$ must have been composite.

Proposition 0.21. Let $a, b \in \mathbb{Z}$. If $a^3|b^2$, then a|b.

Proof. Since $a^3|b^2$, there exists a $k \in \mathbb{Z}$ such that

$$b^2 = ka^3.$$

Taking the square root of both sides, we obtain

$$b = \sqrt{ka^3} = a\sqrt{ka}$$

This shows that a times a number equals b, which proves that a|b.

Proposition 0.22. $\forall n \in \mathbb{N}$,

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Proof. <u>Base Case</u>: Observe that

$$\frac{1(1+1)}{2} = \frac{2}{2} = 1$$

So, the result holds for n = 1. Inductive Step: Suppose the result holds for all $n \in \mathbb{N}$, then

$$1 + 2 + \dots + (n + 1) = (1 + 2 + \dots + n) + (n + 1)$$

= $\frac{n(n + 1)}{2} + (n + 1)$
= $\frac{n(n + 1)}{2} + \frac{2(n + 1)}{2}$
= $\frac{n(n + 1) + 2(n + 1)}{2}$
= $\frac{(n + 1)(n + 2)}{2}$
= $\frac{(n + 1)((n + 1) + 1)}{2}$

Proposition 0.23. For all sets A and B, $A^c \cup B^c \subseteq (A \cup B)^c$.

Proof. Suppose A and B are sets and $x \in A^c \cup B^c$. Then $x \in A^c$ or $x \in B^c$ by definition of union. It follows that $x \notin A$ or $x \notin B$ by definition of complement, and so $x \notin A \cup B$ by definition of union. Thus $x \in (A \cup B)^c$ and hence $A^c \cup B^c \subseteq (A \cup B)^c$.

Proposition 0.24. Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = 2x + 3. Then f is injective.

Proof. Suppose $x, y \in \mathbb{R}$ such that x = y. Then we can multiply both sides by 2 and then add 3 to both sides to get that 2x + 3 = 2y + 3. But this equation says that f(x) = f(y). Therefore, f is injective.

Proposition 0.25. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. Then f is injective.

Proof. Suppose $x, y \in \mathbb{R}$ are such that f(x) = f(y), ie $x^2 = y^2$. Taking the square root of both sides, we see that x = y. Hence, f is injective. \Box