
Find The Error Problems

Chloe Wawrzyniak

Describe the error(s) in each of the following “proofs”. It is worth noting
that some of the below propositions are true, while others are not. You are not
being asked to determine whether the proposition is true. You are being asked
to find the error in the “proofs”, regardless of the validity of the proposition.

Proposition 0.1. For all integers k, if k > 0 then k2 + 2k + 1 is composite.

Proof. Suppose k is any integer such that k > 0. If k2 + 2k + 1 is composite,
then k2 + 2k + 1 = rs for some integers r and s such that

1 < r < (k2 + 2k + 1)

and

1 < s < (k2 + 2k + 1).

Since k2 + 2k + 1 = rs where both r and s are strictly between 1 and
k2 + 2k + 1, then k2 + 2k + 1 is not prime. Hence, k2 + 2k + 1 is composite, as
was to be shown.

Proposition 0.2. The sum of any two even integers equals 4k for some integer
k.

Proof. Suppose m and n are any two even integers. By definition of even,
m = 2k for some integer k and n = 2k for some integer k. By substitution,

m + n = (2k) + (2k) = 4k

This is what was to be shown.

Proposition 0.3. For all integers k, if k > 0 then k2 + 2k + 1 is composite.

Proof. For k = 2, k2 + 2k + 1 = 22 + 2 · 2 + 1 = 9. But 9 = 3 · 3, and so 9 is
composite. Hence the proposition is true.

Proposition 0.4. The difference between any odd integer and any even integer
is odd.
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Proof. Suppose n is any odd integer, and m is any even integer. By definition
of odd, n = 2k + 1 where k is an integer, and by definition of even, m = 2k
where k is any integer. Then

n−m = (2k + 1)− 2k = 1.

But 1 is odd. Therefore, the difference between any odd integer and any
even integer is odd.

Proposition 0.5. The sum of any two rational numbers is a rational number.

Proof. Suppose r and s are rational numbers. Then r = a
b and s = c

d for some
integers a, b, c, d with b 6= 0 and d 6= 0 by definition of rational. Then

r + s =
a

b
+

c

d
.

But this is a sum of two fractions, which is a fraction. So r + s is a rational
number since a rational number is a fraction.

Proposition 0.6. For any integer n, n2 + 5 is not divisible by 4.

Proof. If n is even, then n = 2k for some integer k. So,

n2 + 5 = (2k)2 + 5 = 4k2 + 5 = 4(k2 + 1) + 1,

which leaves a remainder of 1 when divided by 4. Therefore n2 + 5 is not
divisible by 4.

Proposition 0.7. Let a, b, c ∈ Z. Then ac|bc if and only if a|b.

Proof. If ac|bc, then

bc = ack (1)

for some k ∈ Z. Then, dividing both sides of equation (1) by c, we obtain

b = ak.

Since k ∈ Z, we see that a|b, as desired.

Note that the proof of Proposition 0.7 has two errors. One is more obvious
than the other.

Proposition 0.8. If x ∈ R, then 4
x(4−x) ≥ 1.

Proof. Observe that since x− 2 ∈ R,

(x− 2)2 ≥ 0.

We can rearrange the above equation to get our desired result:
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(x− 2)2 ≥ 0

x2 − 4x + 4 ≥ 0

x2 − 4x ≥ −4

x(4− x) ≤ 4

4− x ≤ 4

x

1 ≤ 4

x(4− x)

Proposition 0.9. ∀n ∈ Z, if n is odd, then n−1
2 is odd.

Proof. Let n ∈ Z be odd. Then, n = 2k + 1 for some k ∈ Z. So,

n− 1

2
=

2k + 1− 1

2
= k,

which is clearly odd.

Proposition 0.10. Let a, b, c ∈ Z. If c|ab, then c|a and c|b.

Proof. If c|a then a = ck for some k ∈ Z, and if c|b, then b = c` for some ` ∈ Z.
So,

ab = (ck)(c`) = c(ck`).

Since ck` ∈ Z, this shows that c|ab.

Proposition 0.11. Every integer is rational.

Proof. Suppose not. Then, every integer is irrational. But then 1 = 1
1 , which

is an integer, is rational. This is a contradiction. Hence, every integer must be
rational.

Proposition 0.12. Suppose a, b, c ∈ Z. If a|b and a|c, then 2a|(b + c).

Proof. If a divides b, then b = ak for some k ∈ Z. Since a divides c, then c = ak
for some k ∈ Z. Therefore,

b + c = (ak) + (ak) = (2a)k.

Since k ∈ Z, this shows that 2a|(b + c).

Proposition 0.13. ∀x ∈ Z, x2 + x is even.
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Proof. Suppose x ∈ Z is even. Then, by definition, x = 2k for some k ∈ Z.
Therefore,

x2 + x = (2k)2 + (2k)

= 4k2 + 2k

= 2(2k2 + k).

Since 2k2 + k ∈ Z, this shows that x2 + x is even.

Proposition 0.14. ∃x ∈ Q such that ∀k ∈ Z, |x− k| > 1
4 .

Proof. Let x = 1
2 ∈ Q and k = 2 ∈ Z. Then

|x− k| =
∣∣∣∣12 − 2

∣∣∣∣ =
3

2
>

1

4

Proposition 0.15. If k is any odd integer and m is any even integer, then
m2 − k2 is odd.

Proof. Since k is even, k = 2a for some a ∈ Z. Since m is odd, m = 2a + 1 for
some a ∈ Z. Then,

m2 − k2 = (2a + 1)2 − (2a)2

= 4a2 + 4a + 1− 4a2

= 4a + 1

= 2(2a) + 1.

Since 2a ∈ Z, by definition m2 − k2 is odd.

Proposition 0.16. An integer x is odd if and only if x = 2k − 1 for some
k ∈ Z.

Proof. If x = 2k − 1 for some k ∈ Z, we can rewrite this as

x = 2k − 1

= 2(k − 1) + 2− 1

= 2(k − 1) + 1.

Since (k − 1) ∈ Z, this shows that x is odd.

Proposition 0.17. Let r ∈ Q and s ∈ R. If rs ∈ Q, then s ∈ Q.
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Proof. Since r ∈ Q, ∃a, b ∈ Z with b 6= 0 such that

r =
a

b
.

Then, if s ∈ Q, ∃c, d ∈ Z with d 6= 0 such that

s =
c

d
.

So,

rs =
a

b

c

d
=

ac

bd
.

Since ac, bd ∈ Z with bd 6= 0, this shows that rs ∈ Q.

Proposition 0.18. If a and b are both even integers, then a2 + b2 is divisible
by 8.

Proof. Since a and b are even integers, a = 2x for some x ∈ Z and b = 2x for
some x ∈ Z. So,

a2 + b2 = (2x)2 + (2x)2

= 4x2 + 4x2

= 8x2

Since x2 ∈ Z, this shows that a2 + b2 is divisible by 8.

Proposition 0.19. If a and b are even integers, then a4 + b4 + 32 is divisible
by 8.

Proof. Suppose a is an even integer, which we can take to be 2, and suppose b
is an even integer, which we can take to be 4. Then

a4 + b4 + 32 = 24 + 42 + 32 = 16 + 256 + 32 = 304.

Since 304 is divisible by 8 (namely, 304 = 8*38), we are done.

Proposition 0.20. Take n ∈ N. Then n3 + 1 is composite.

Proof. Suppose n3 + 1 is prime. For notational simplicity, call it p. Then, since
p is prime, it has no divisors. But p is an integer, and 1 divides every integer,
so p has a divisor. Therefore, we have shown that p has a divisor and that p
has no divisors, which is a contradiction. Therefore, n3 + 1 must have been
composite.

Proposition 0.21. Let a, b ∈ Z. If a3|b2, then a|b.
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Proof. Since a3|b2, there exists a k ∈ Z such that

b2 = ka3.

Taking the square root of both sides, we obtain

b =
√
ka3 = a

√
ka.

This shows that a times a number equals b, which proves that a|b.

Proposition 0.22. ∀n ∈ N,

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2

Proof. Base Case: Observe that

1(1 + 1)

2
=

2

2
= 1.

So, the result holds for n = 1.
Inductive Step: Suppose the result holds for all n ∈ N, then

1 + 2 + · · ·+ (n + 1) = (1 + 2 + · · ·+ n) + (n + 1)

=
n(n + 1)

2
+ (n + 1)

=
n(n + 1)

2
+

2(n + 1)

2

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2

=
(n + 1)((n + 1) + 1)

2

Proposition 0.23. For all sets A and B, Ac ∪Bc ⊆ (A ∪B)c.

Proof. Suppose A and B are sets and x ∈ Ac ∪Bc. Then x ∈ Ac or x ∈ Bc by
definition of union. It follows that x 6∈ A or x 6∈ B by definition of complement,
and so x 6∈ A ∪ B by definition of union. Thus x ∈ (A ∪ B)c and hence
Ac ∪Bc ⊆ (A ∪B)c.

Proposition 0.24. Define f : R→ R by f(x) = 2x + 3. Then f is injective.

Proof. Suppose x, y ∈ R such that x = y. Then we can multiply both sides by
2 and then add 3 to both sides to get that 2x + 3 = 2y + 3. But this equation
says that f(x) = f(y). Therefore, f is injective.

Proposition 0.25. Define f : R→ R by f(x) = x2. Then f is injective.

Proof. Suppose x, y ∈ R are such that f(x) = f(y), ie x2 = y2. Taking the
square root of both sides, we see that x = y. Hence, f is injective.
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