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1 Introduction

Often, when solving an existence problem, we have to work backwards from
the properties we want our object to have. Writing up these problems can be
particularly tricky: when we first solve the problem we work backwards, but
when we write up the solution we have to work in the other direction.

Here’s an example of what I mean:

Example 1.1. Suppose f(x) = x2 − 12x + 5 and g(x) = x3 − 5x2 − 3. Then,
there exists some x0 ∈ R such that f(x0) = g(x0).

We could use Intermediate Value Theorem to solve this problem, but what
if instead, we wanted to compute an exact value for x0? Pull out a peice of
scratch paper, and write at the top of it what we want to be true:

f(x) = g(x).

Since we know what f and g are, this becomes

x2 − 12x+ 5 = x3 − 5x− 3.

Using the algebraic techniques we are all familiar with, this becomes

0 = x3 − 6x2 + 12x− 8

= (x− 2)3

We know that x = 2 solves the above equation, so we think that the x0 we
want is x0 = 2.

Okay, so we found our x0. Are we done?
Well, yes and no.
We’ve figured out what the solution is going to be, but everything we’ve

written down at this point is scratch work. If we want to write down a formal
proof, we should start with this solution (namely x0 = 2) and then prove that
it satisfies the property we want.
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Proof. Suppose x0 = 2. Certainly, 2 ∈ R. Furthermore,

f(x0) = f(2)

= (2)2 − 12(2) + 5

= 4− 24 + 5

= −15

and

g(x0) = g(2)

= (2)3 − 5(2)2 − 3

= 8− 20− 3

= −15

Hence, f(x0) = g(x0), and our proof is complete.

This situation doesn’t just apply to existence proofs. There are many other
problems whose scratch work is backwards from the proof writeup.

Example 1.2. For all x ∈ R with 0 < x < 4,

4

x(4− x)
≥ 1

Again, let’s pull out a piece of scratch paper, write down what we want to
be true, and start doing some algebra:

4

x(4− x)
≥ 1

Let’s multiply both sides by x(4 − x) to clear the denominator (note that
this won’t change the direction of the inequality, since 0 < x < 4, so both x and
4− x are positive numbers). Then, simplify.

4 ≥ x(4− x) = 4x− x2

Moving everything to the left-hand side, we obtain

x2 − 4x+ 4 ≥ 0

However, we know that x2 − 4x+ 4 = (x− 2)2. Squares of real numbers are
always nonnegative, so our above inequality must be true.

Cool, we started with what we wanted and ended up with a true statement.
So, we’re done... right?

Well, again, yes and no. We figured out what the logic should be since all of
our algebraic steps can be reversed, but just as before, our formal proof needs
to start with something we know to be true, and end with the conclusion we
want.
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Proof. Observe that for all real numbers x,

0 ≤ (x− 2)2 = x2 − 4x+ 4

Subtracting 4 from both sides and multiplying by −1, we obtain

4 ≥ 4x− x2 = x(4− x)

For 0 < x < 4, both x and 4 − x are positive numbers, so we can divide
both sides of the inequality by x(4 − x) without changing the direction of the
inequality. So, we obtain

4

x(4− x)
≥ 1

which is what we wanted to show, so we are done.

This backwards-scratch-work-forwards-proof business can be unsettling for
students seeing proof for the first time. In your previous courses, like Algebra
or Calculus, the computation was the solution you turned in. There was no
second step.

Proof writing is a whole new animal. This is what research Mathematicians
are doing every day. Often, we have to wander down a lot of rabbit holes before
we find something that works, and attempting to work backwards is one of many
options in our toolkit. So, scratch work is incredibly important at this stage in
your mathematical work.

It may seem odd to start our proofs with something like “Let x0 = 2.” Some-
one reading your proof for the first time might be confused. Where the heck did
2 come from? This is one reason that textbooks include the scratch work when
presenting these kinds of problems. Pedagogically, it is important to include
intuition and motivation for students to understand where these numbers came
from. However, logically, it is unnecessary to include it.

The next few sections will cover a few senarios where we nearly always have
to work backwards in our scratch work.

2 Surjective Functions

Definition 2.1. Let A and B be sets. Then a function f : A→ B is surjective
if ∀b ∈ B, ∃a ∈ A such that f(a) = b.

So, if we want to prove that a function is surjective, we can start with the
equation f(a) = b and try to solve for a in terms of b. Then, that a should be
what we want.

But the logic there is backwards from what we’re supposed to show: we have
to start with an arbitrary b ∈ B, find an a ∈ A, and then prove that the a we
came up with satisfies f(a) = b.
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Example 2.2. Define the function f : R → [0,∞) by f(x) = x2. Then, f is
surjective.

We start with some y ∈ [0,∞) with the goal of finding some x ∈ R such that
f(x) = y. So, we pull out a piece of scratch paper to figure out what kind of x
we might want:

If f(x) = y, then x2 = y. Taking square roots of both sides, we see that a
good option could be to pick x =

√
y. We do have to be careful when taking

square roots, because we want the x we pick to be a real number. Since y ≥ 0,
its square root will indeed be real, so we’re good here.

Okay, we found our x, and we even double checked that it’s a real number.
So, we’re good, right? Not quite (sensing a pattern here?). We have to write
up our proof in the other direction.

Proof. Let y ∈ [0,∞), and let x =
√
y. Since y ≥ 0, we know that its square

root is real, so x ∈ R. Furthermore,

f(x) = f(
√
y) = (

√
y)2 = |y| .

However, since y ≥ 0, |y| = y, so f(x) = y, thus demonstrating that f is
surjective.

3 Delta-Epsilon Proofs

If you took Calculus, there’s a good chance you’ve seen the formal definition of a
limit. If you’ve only seen it in Calculus courses, there’s also a pretty good chance
that it didn’t make a whole lot of sense. This is likely the first mathematically
precise definition you see in your coursework, and it takes some time to get used
to. However, one of the other reasons Calculus students typically struggle with
the formal definition of a limit is the fact that for nearly every proof using it,
your scratch work is backwards from the writeup - something you likely wouldn’t
have seen before!

For simplicity, we are only considering real-valued functions on R, but these
definitions can be extended to functions whose domains are subsets of R, or to
other systems such as Rn, C, or general metric spaces.

Definition 3.1. Let f be a real-valued function on R, and let a ∈ R. Then, we
say that

lim
x→a

f(x) = L

if ∀ε > 0, ∃δ > 0 such that

|x− a| < δ ⇒
∣∣f(x)− L

∣∣ < ε.
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Let’s unpack that definition a lit-
tle bit before we jump into some ex-
amples. You can think of this as a
sort of game. In this game, you are
given some positive number ε, and
based on that ε, the function, and
a, you have to find a δ. What kind
of δ do you want to pick? Well, you
want to make sure that whenever you
plug x-values into f that are at most δ
away from a, the outputs are at most
ε away from L.

Okay, so you know what you want
δ to do, but how do you go about ac-
tually picking it? Well, let’s do some
scratch work. Start with

∣∣f(x)− L
∣∣ < ε, then work backwards to get |x− a|,

since that’s what we know is related to δ.
Talking about this in the abstract can be difficult to understand, so let’s do

an example.

Example 3.2. Prove that

lim
x→1

(2x+ 3) = 5.

Okay, so we know we want
∣∣f(x)− 5

∣∣ to be less than ε whenever |x− a| is
less than the δ that we’re picking. I should emphasize at this point that we are
not picking ε. You only get to pick the δ.

Well, let’s start with writing down the equation we want to be true:∣∣(2x+ 3)− 5
∣∣ < ε

We can simplify this a little to get

|2x− 2| < ε

If we factor a 2 out of the left hand side, we get

2|x− 1| < ε

If you recall, we are going to be working only with the x-values that satisfy
|x− 1| < δ. So, it looks like if we make δ = ε

2 , the above equation will be true
whenever |x− 1| < δ. So, we picked our δ. So we’re done? Nah, you know
better than that by now. We still have to write our formal proof. Our proof
needs to state what we claim δ to be, and then prove that as long as |x− 1| is
less than that δ,

∣∣f(x)− 5
∣∣ will be less than ε.

Proof. Let f(x) = 2x + 3. Let ε > 0. Then, let δ = ε
2 . Then whenever

|x− 1| < δ, we have
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∣∣f(x)− L
∣∣ =

∣∣(2x+ 3)− 5
∣∣

= |2x− 2|
= 2|x− 1|
< 2δ

= 2
ε

2
= ε

Hence, whenever |x− 1| < ε
2 ,
∣∣f(x)− 5

∣∣ < ε. Since ε > 0 was arbitrary, this
shows that

lim
x→1

(2x+ 3) = 5.

In the above example, we were able to solve for δ explicitly, but sometimes,
we have to be a bit more clever than that. Let’s do a more complicated example.

Example 3.3. Prove that

lim
x→−2

(x2 − 6) = −2.

Let’s follow the same pattern: start with what we want to be true.∣∣∣(x2 − 6)− (−2)
∣∣∣ < ε

We can simplify a little and factor to get∣∣(x− 2)(x+ 2)
∣∣ < ε

Okay, there’s our
∣∣x− (−2)

∣∣ = |x+ 2| that we want. Last time, we just
divided by the rest of the stuff, and got our δ. Unfortunately, this time, we
can’t do that because the other stuff involves an x. This is where we need to
get a little creative.

What would this look like if we picked a δ that was at most 1? Then, we
would know that since |x+ 2| < δ ≤ 1,

−1 < x+ 2 < 1

Subtracting 4 from all values, we get

−5 < x− 2 < −3 < 5

Hence, we see that this gives |x− 2| < 5. So, plugging into the earlier
equation, we get

5|x+ 2| < ε.
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So, we should make δ = ε
5 . Right? Well sort of. We only got the 5 by

assuming that δ ≤ 1, so we need to take that into account in our definition. We
deal with that by making δ = min(1, ε5 ). This gives us that δ ≤ 1 and δ ≤ ε

5 ,
regardless of what ε is.

Okay, you know the drill by now: we’re done with scratch work, so let’s start
our proof:

Proof. Let ε > 0. Then, let δ = min(1, ε5 ).
Suppose |x+ 2| < δ. Since δ ≤ 1, this gives

−1 ≤ −δ < x+ 2 < δ ≤ 1.

Subtracting 4, we see that

−5 < x− 2 < −3,

and hence |x− 2| < 5. Therefore, we obtain

∣∣∣(x2 − 6)− (−2)
∣∣∣ =

∣∣∣x2 − 4
∣∣∣

=
∣∣(x− 2)(x+ 2)

∣∣
= |x− 2||x+ 2|
< 5|x+ 2|
< 5δ

≤ 5
ε

5
= ε

Hence,

lim
x→−2

(x2 − 6) = −2.
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