Workshop 5

Chloe Wawrzyniak

Math 311 Spring 2018

1 Goal

The goal of this workshop is to explore the relationship between accumulation points of a set and limits/limit points of a sequence, and to introduce the notions of liminf and lim sup.

2 Accumulation Points of a Set

Recall that for a set $S \subseteq \mathbb{R}$, an **accumulation point** for the set is a point $x \in \mathbb{R}$ such that every neighborhood of x contains infinitely many elements of S. It is worth noting that this definition is equivalent to saying that for all $\varepsilon > 0$, the interval $(x - \varepsilon, x + \varepsilon)$ contains infinitely many elements of S.

- 1. How many accumulation points does a finite set have?
- 2. Find an uncountable set whose set of accumulation points is all of \mathbb{R} .
- 3. Find a countable set whose set of accumulation points is all of \mathbb{R} .
- 4. Construct a set with exactly two accumulation points.
- 5. Let $S \subset \mathbb{R}$ be nonempty. Suppose $x \in \mathbb{R}$ such that $\forall \varepsilon > 0, S \cap (x \varepsilon, x + \varepsilon) \{x\} \neq \emptyset$.
 - (a) Prove that x is an accumulation point of S.
 - (b) Suppose we changed our assumption to say that $\forall \varepsilon > 0, S \cap (x \varepsilon, x + \varepsilon) \neq \emptyset$. Give an example to show that x may not be an accumulation point of S in this case.

3 Limit Points: Accumulation Points of a Sequence

For a sequence of real numbers $\{a_n\}_{n=1}^{\infty}$, a **limit point** (sometimes called an accumulation point) of the sequence is a real number x such that there exists a subsequence $\{a_{n_k}\}$ that converges to x.

1. How many limit points does the sequence $\{a_n\}_{n=1}^{\infty}$ have in each of the below cases?

- (a) $a_n = 1$
- (b) $a_n = (-1)^n$
- (c) a_n is the unique integer between 1 and 3 that is congruent to $n \mod 3$.
- (d) $a_n = 100$ for n = 1, ..., 100, and $a_n = \frac{1}{n}$ for n > 100.

- 2. Construct a sequence with one limit point.
- 3. Construct a sequence with no limit points.
- 4. Construct a sequence with infinitely many limit points.
- 5. Prove that a sequence of real numbers converges to x if and only if every subsequence converges to x.
- 6. Construct a sequence that has exactly one limit point, but which does not converge.
- 7. Suppose $\{a_n\}_{n=1}^{\infty}$ is a sequence of real numbers and suppose $x \in \mathbb{R}$ is such that $\forall \varepsilon > 0$, $\forall k \in \mathbb{N}, \{a_n : n \ge k\} \cap (x \varepsilon, x + \varepsilon) \neq \emptyset$. Show that x is a limit point of the sequence $\{a_n\}_{n=1}^{\infty}$. Compare this to problem 5 in the first section.

4 $\liminf \operatorname{and} \limsup$

Definition 4.1. The lim sup of a sequence $\{a_n\}$, denoted $\limsup_{n \to \infty} a_n$ or sometimes $\overline{\lim_{n \to \infty}} a_n$, is the supremum of the set of limit points of the the sequence. The lim inf of a sequence $\{a_n\}$, denoted $\liminf_{n \to \infty} a_n$ or sometimes $\underset{n \to \infty}{\lim_{n \to \infty}} a_n$, is the infemum of the set of limit points of the the sequence.

- 5. For this problem, we will investigate the sequence $\sin(\frac{\pi}{4}), \sin(\frac{\pi}{2}), \sin(\frac{3\pi}{4}), \dots, \sin(\frac{n\pi}{4}), \dots$
 - (a) Write out the set of limit points for the sequence.
 - (b) What is $\limsup \sin(\frac{n\pi}{4})$?
 - (c) What is $\liminf \sin(\frac{n\pi}{4})$?

6. For this problem, we will investigate the sequence $1, -\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \ldots, (-1)^n (1-\frac{1}{n}), \ldots$

- (a) Write out the set of limit points for the sequence.
- (b) What is $\limsup_{n \to \infty} (-1)^n (1 \frac{1}{n})?$
- (c) What is $\liminf_{n \to \infty} (-1)^n (1 \frac{1}{n})?$
- 7. Suppose $\{a_n\}$ is a sequence of real numbers satisfying $\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n$. How many limit points does the sequence $\{a_n\}$ have? Prove your answer.
- 8. Let $\{a_n\}$ be a bounded sequence of real numbers. Prove that the sequence converges if and only if $\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n$. You may use the fact that a bounded sequence converges if and only if it has exactly one limit point.

5 Challenge Questions

For this section, let $\{a_n\}$ denote a bounded sequence of real numbers. Construct a new sequence $\{b_k\}$ defined by

$$b_k = \sup_{n \ge k} a_n$$

- 1. For each of the below sequences, find b_1, b_2, b_3 , and a general term b_k of the sequence defined above.
 - (a) $a_n = (-1)^n (1 + \frac{1}{n})$
 - (b) $a_n = \sin(\frac{2^n \pi}{8})$ (c) $a_n = (-1)^n$

 - (d) $a_n = \frac{(5-n)(n-12)}{n^3}$ Hint: Look at the graph of $f(x) = \frac{(5-x)(x-12)}{x^3}$
- 2. Prove that for any bounded sequence $\{a_n\}$ of real numbers, the sequence $\{b_k\}$ converges.
- 3. Prove that $\limsup_{n \to \infty} a_n = \lim_{k \to \infty} b_k$.

Hint: You may find it useful to construct a subsequence $\{a_{n_j}\}$ which converges to the same limit as $\{b_k\}$.