Workshop 4

Chloe Wawrzyniak

Math 311 Spring 2018

1 Goal

The goal of this workshop is to practice proving statements about arithmetic operations on sequences.

2 Questions

1. For which (if any) real numbers a and b does the sequence

$$
\left\{\left(a^{n}+b^{n}\right)^{1 / n}\right\}_{n=1}^{\infty}
$$

converge? For those values, what does it converge to?
2. Find an example of each of the following, or prove that one cannot exist.
(a) Sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, neither of which converge, but such that the sum $\left\{x_{n}+y_{n}\right\}$ converges.
(b) A sequence $\left\{x_{n}\right\}$ which converges and $\left\{y_{n}\right\}$ which does not converge such that $\left\{x_{n}+y_{n}\right\}$ converges.
(c) A sequence $\left\{b_{n}\right\}$ that converges with $b_{n} \neq 0$ for all n, and such that $\left\{1 / b_{n}\right\}$ does not converge.
(d) A bounded sequence $\left\{a_{n}\right\}$ and a convergent sequence $\left\{b_{n}\right\}$ such that $\left\{a_{n}-b_{n}\right\}$ is bounded.
(e) Two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ where both $\left\{a_{n}\right\}$ and $\left\{a_{n} b_{n}\right\}$ converge but $\left\{b_{n}\right\}$ does not converge.
3. In this problem, we look at Cesaro means:
(a) Prove that if a sequence $\left\{s_{n}\right\}$ converges, then the sequence of averages

$$
y_{n}=\frac{x_{1}+\cdots+x_{n}}{n}
$$

also converges to the same thing.
(b) Give an example to show that the sequence of averages can converge even if the x_{n} don't converge.
4. Let $\left\{a_{n}\right\}$ be a bounded (but not necessarily convergent) sequence of real numbers and let $\left\{b_{n}\right\}$ be a sequence that converges to 0 . Prove that $a_{n} b_{n}$ converges to 0 . Can we say anything about the sequence $a_{n} b_{n}$ if b_{n} converges to some nonzero number?

