Workshop 4

Chloe Wawrzyniak

Math 311 Spring 2018

1 Goal

The goal of this workshop is to practice proving statements about arithmetic operations on sequences.

2 Questions

1. For which (if any) real numbers a and b does the sequence

$$\left\{ \left(a^n + b^n\right)^{1/n} \right\}_{n=1}^{\infty}$$

converge? For those values, what does it converge to?

- 2. Find an example of each of the following, or prove that one cannot exist.
 - (a) Sequences $\{x_n\}$ and $\{y_n\}$, neither of which converge, but such that the sum $\{x_n + y_n\}$ converges.
 - (b) A sequence $\{x_n\}$ which converges and $\{y_n\}$ which does not converge such that $\{x_n+y_n\}$ converges.
 - (c) A sequence $\{b_n\}$ that converges with $b_n \neq 0$ for all n, and such that $\{1/b_n\}$ does not converge.
 - (d) A bounded sequence $\{a_n\}$ and a convergent sequence $\{b_n\}$ such that $\{a_n b_n\}$ is bounded.
 - (e) Two sequences $\{a_n\}$ and $\{b_n\}$ where both $\{a_n\}$ and $\{a_nb_n\}$ converge but $\{b_n\}$ does not converge.
- 3. In this problem, we look at Cesaro means:
 - (a) Prove that if a sequence $\{s_n\}$ converges, then the sequence of averages

$$y_n = \frac{x_1 + \dots + x_n}{n}$$

also converges to the same thing.

- (b) Give an example to show that the sequence of averages can converge even if the x_n don't converge.
- 4. Let $\{a_n\}$ be a bounded (but not necessarily convergent) sequence of real numbers and let $\{b_n\}$ be a sequence that converges to 0. Prove that a_nb_n converges to 0. Can we say anything about the sequence a_nb_n if b_n converges to some nonzero number?