Workshop 2

Chloe Wawrzyniak

Math 311 Spring 2018

1 Goal

The goal of this workshop is to first review some sticky points about proof-writing and then to play with some properties of real numbers. When discussing real numbers, we will practice working with supremums and infemums.

2 Proof-Writing Review

2.1 Quantifiers

- 1. What's the difference between the following two statements?
 - For every person in this class, there is a teacher who taught him/her Calculus.
 - There is a teacher who, for every person in this class, this teacher taught him/her Calculus.
- 2. Let X denote the set of all people. Let P(x, y) stand for "x is y's mother", where $x, y \in X$. Translate the following statements into English, and explain their difference
 - (a) $(\forall x \in X)(\exists y \in X)P(x,y)$
 - (b) $(\exists x \in X) (\forall y \in X) P(x, y)$
- 3. Let \mathcal{F} denote a set of functions, $f \in \mathcal{F}$, and let $S \subset \mathbb{R}$ be some set on which all the functions in \mathcal{F} are defined.
 - (a) We say f is <u>continuous at x ∈ S</u> if and only if ∀ε > 0, ∃δ > 0 such that ∀y ∈ ℝ, |x − y| < δ implies |f(x) − f(y)| < ε.
 What does it mean to say that f is not continuous at x?
 - (b) We say f is <u>continuous on S</u> if and only if $\forall x \in S$ and $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall y \in S$, if $|x y| < \delta$ then $|f(x) f(y)| < \epsilon$. What does it mean to say that f is *not* continuous on S?
 - (c) We say f is <u>uniformly continuous on S</u> if and only if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall x, y \in S$, if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$. What does it mean to say that f is *not* uniformly continuous on S?
 - (d) We say \mathcal{F} is equicontinuous if and only if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall f \in \mathcal{F}$ and $\forall x, y \in S$, if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$. What does it mean to say that \mathcal{F} is *not* equicontinuous on S?

- 4. Consider the definitions above.
 - (a) What is the difference between continuity and uniform continuity?
 - (b) What is the difference between the statements "All functions in \mathcal{F} are uniformly continuous," and " \mathcal{F} is equicontinuous"?

2.2 Find-The-Error

Find the error in each of the following "proofs". Note that in some cases, the proposition is false, while in other cases, the proposition is true. You are *not* being asked whether or not the proposition is true. You are being asked to find the logical flaw in the "proof" presented.

1.

Proposition 2.1. Let $a, b, c \in \mathbb{Z}$. Then ac|bc if and only if a|b.

Proof. If ac|bc, then

$$bc = ack$$
 (1)

for some $k \in \mathbb{Z}$. Then, dividing both sides of equation (1) by c, we obtain

b = ak.

Since $k \in \mathbb{Z}$, we see that a|b, as desired.

Note that the proof of Proposition 2.1 has two errors. One is more obvious than the other.

2.

Proposition 2.2. Every integer is rational.

Proof. Suppose not. Then, every integer is irrational. But then $1 = \frac{1}{1}$, which is an integer, is rational. This is a contradiction. Hence, every integer must be rational.

3.

Proposition 2.3. $\exists x \in \mathbb{Q}$ such that $\forall k \in \mathbb{Z}, |x-k| > \frac{1}{4}$.

Proof. Let $x = \frac{1}{2} \in \mathbb{Q}$ and $k = 2 \in \mathbb{Z}$. Then

$$|x-k| = \left|\frac{1}{2} - 2\right| = \frac{3}{2} > \frac{1}{4}$$

4.

Proposition 2.4. Take $n \in \mathbb{N}$. Then $n^3 + 1$ is composite.

Proof. Suppose $n^3 + 1$ is prime. For notational simplicity, call it p. Then, since p is prime, it has no divisors. But p is an integer, and 1 divides every integer, so p has a divisor. Therefore, we have shown that p has a divisor and that p has no divisors, which is a contradiction. Therefore, $n^3 + 1$ must have been composite.

3 Real Numbers

1. Prove that for all $x \in \mathbb{R}$ with 0 < x < 4,

$$\frac{4}{x(4-x)} \ge 1$$

- 2. Let $S=\{\frac{n-1}{n+1}:n\in\mathbb{N}\}.$
 - (a) Prove that 1 is an upper bound for S.
 - (b) Prove that each of the following is not the supremum of S.
 - i. 10
 - ii. 0
 - iii. $\frac{1}{2}$
- 3. Give an example of each of the following, or state that it cannot exist.
 - (a) A set B such that $\inf B \ge \sup B$.
 - (b) A finite set that contains its infemum but not its supremum.
 - (c) A bounded subset of \mathbb{Q} that contains it supremum but not its infemum
- 4. Given two sets A and B, define $A + B = \{a + b : a \in A \text{ and } b \in B\}$. Follow these steps to show that if A and B are nonempty and bounded above, then $\sup(A + B) = \sup(A) + \sup(B)$.
 - (a) Let $s = \sup(A)$ and $t = \sup(B)$. Prove that s + t is an upper bound for A + B.
 - (b) Let u be any upper bound for A + B, and let a be some element of A. Prove that $t \le u a$.
 - (c) Finally, show that $\sup(A + B) = s + t$.