Workshop 11

Chloe Wawrzyniak

Math 311 Section 03 Spring 2018

1 Goal

The goal of this workshop is to practice proving statements about continuity.

2 Continuity

1. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as below:

$$
f(x)= \begin{cases}x \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Prove that f is continuous at 0 .
2. Let $f(x)=e^{x}$ for all $x \in \mathbb{R}$. Prove that f is continuous. You may use the fact that $\lim _{x \rightarrow 0} e^{x}=1$.
3. Prove that

$$
\lim _{x \rightarrow 0}|x|^{x}=1
$$

You may use L'Hôpital's rule.
4. Suppose the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and that $f(r)=g(r)$ for every $r \in \mathbb{Q}$. Prove that $f(x)=g(x)$ for every $x \in \mathbb{R}$. Hint: the rationals are dense in \mathbb{R}.
5. Suppose the function $g: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\lim _{h \rightarrow 0}(g(x+h)-g(x-h))=0
$$

for every $x \in \mathbb{R}$. Does that imply that g is continuous? Prove or give a counterexample.
6. Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
f(x)= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{q} & \text { if } x=\frac{p}{q} \text { in lowest terms } . \\ 0 & \text { if } x \in \mathbb{R}-\mathbb{Q}\end{cases}
$$

Prove that f is continuous at every irrational point and discontinuous at every rational point.

