Workshop 10

Chloe Wawrzyniak

Math 311 Section 03 Spring 2018

1 Goal

The goal of this workshop is to understand how limits behave with usual algebraic operators.

2 Limit Theorems

Throughout this workshop, let $D \subseteq \mathbb{R}$, let $f, g: D \rightarrow \mathbb{R}$, and let x_{0} be an accumulation point of D. You may not use theorem 2.1 from the textbook in your proofs.

1. Prove that if f and g have limits at x_{0}, then

$$
\lim _{x \rightarrow x_{0}}(f+g)(x)=\lim _{x \rightarrow x_{0}} f(x)+\lim _{x \rightarrow x_{0}} g(x) .
$$

2. Is it true that if $\lim _{x \rightarrow x_{0}}(f+g)(x)$ exists, then both f and g have limits at x_{0} ? Prove or give a counterexample.
3. Prove that if f and g have limits at x_{0}, then

$$
\lim _{x \rightarrow x_{0}}(f g)(x)=\left(\lim _{x \rightarrow x_{0}} f(x)\right)\left(\lim _{x \rightarrow x_{0}} g(x)\right) .
$$

You may use theorem 2.3 from the textbook in this problem.
4. Is it true that if $\lim _{x \rightarrow x_{0}}(f g)(x)$ exists, then both f and g have limits at x_{0} ? Prove or give a counterexample.
5. Suppose that f and g both have limits at x_{0} and that $f(x) \leq g(x)$ for all $x \in D$. Prove that

$$
\lim _{x \rightarrow x_{0}} f(x) \leq \lim _{x \rightarrow x_{0}} g(x)
$$

6. Suppose $\lim _{x \rightarrow x_{0}} g(x)=L \neq 0$ and that $g(x) \neq 0$ for all $x \in D$. Prove that there is some $M>0$ and some $r>0$ such that $|g(x)| \geq M$ for all $x \in D \cap\left(x_{0}-r, x_{0}+r\right)$.

3 Challenge Problems

1. Suppose that $g(x) \neq 0$ for all $x \in D$. Prove that if f and g have limits at x_{0}, then

$$
\lim _{x \rightarrow x_{0}}\left(\frac{f}{g}\right)(x)=\frac{\lim _{x \rightarrow x_{0}} f(x)}{\lim _{x \rightarrow x_{0}} g(x)}
$$

2. Suppose that $g(x) \neq 0$ for all $x \in D$. Is it true that if $\lim _{x \rightarrow x_{0}}\left(\frac{f}{g}\right)(x)$ exists, then both f and g have limits at x_{0} ? Prove or give a counterexample.
3. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$. If f has a limit at 0 , prove that f has a limit at every point and either $\lim _{x \rightarrow x_{0}} f(x)=1$ or $f(x)=0$ for all $x \in \mathbb{R}$.
