Workshop 10

Chloe Wawrzyniak

Math 311 Section 03 Spring 2018

1 Goal

The goal of this workshop is to understand how limits behave with usual algebraic operators.

2 Limit Theorems

Throughout this workshop, let $D \subseteq \mathbb{R}$, let $f, g : D \to \mathbb{R}$, and let x_0 be an accumulation point of D. You may *not* use theorem 2.1 from the textbook in your proofs.

1. Prove that if f and g have limits at x_0 , then

$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x).$$

- 2. Is it true that if $\lim_{x\to x_0} (f+g)(x)$ exists, then both f and g have limits at x_0 ? Prove or give a counterexample.
- 3. Prove that if f and g have limits at x_0 , then

$$\lim_{x \to x_0} (fg)(x) = \left(\lim_{x \to x_0} f(x)\right) \left(\lim_{x \to x_0} g(x)\right).$$

You may use theorem 2.3 from the textbook in this problem.

- 4. Is it true that if $\lim_{x\to x_0} (fg)(x)$ exists, then both f and g have limits at x_0 ? Prove or give a counterexample.
- 5. Suppose that f and g both have limits at x_0 and that $f(x) \leq g(x)$ for all $x \in D$. Prove that

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

6. Suppose $\lim_{x\to x_0} g(x) = L \neq 0$ and that $g(x) \neq 0$ for all $x \in D$. Prove that there is some M > 0 and some r > 0 such that $|g(x)| \geq M$ for all $x \in D \cap (x_0 - r, x_0 + r)$.

3 Challenge Problems

1. Suppose that $g(x) \neq 0$ for all $x \in D$. Prove that if f and g have limits at x_0 , then

$$\lim_{x \to x_0} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}.$$

- 2. Suppose that $g(x) \neq 0$ for all $x \in D$. Is it true that if $\lim_{x \to x_0} (\frac{f}{g})(x)$ exists, then both f and g have limits at x_0 ? Prove or give a counterexample.
- 3. Assume that $f : \mathbb{R} \to \mathbb{R}$ is such that f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$. If f has a limit at 0, prove that f has a limit at every point and either $\lim_{x\to x_0} f(x) = 1$ or f(x) = 0 for all $x \in \mathbb{R}$.