Name:

- 1. (1 point) Negate the following statement: For all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in \mathbb{R}, |x x_0| < \delta$ implies $|f(x) L| < \varepsilon$.
 - \bigcirc For all $\varepsilon \leq 0$, there exists $\delta \leq 0$ such that for all $x \in \mathbb{R}$, $|x x_0| < \delta$ implies $|f(x) L| < \varepsilon$.
 - $\sqrt{\mbox{ There exists } arepsilon>0}$ such that for all $\delta>0$, there exists $x\in\mathbb{R}$ with $|x-x_0|<\delta$ but $|f(x)-L|\geq arepsilon$.
 - O There exists $\varepsilon > 0$ such that for all $\delta > 0$, there exists $x \in \mathbb{R}$ with $|x x_0| > \delta$ and $|f(x) L| > \varepsilon$.
 - O There exists $\varepsilon \leq 0$ such that for all $\delta \leq 0$, there exists $x \in \mathbb{R}$ with $|x x_0| < \delta$ but $|f(x) L| \geq \varepsilon$.
- 2. (1 point) $\underline{\mathbf{F}}$ True or False: If $\lim_{x\to x_0} f(x) = L$ and x_0 is in the domain of f, then $f(x_0) = L$.
- 3. (1 point) <u>T</u> True or False: If $f : \mathbb{R} \to \mathbb{R}$ is continuous at some $x_0 \in \mathbb{R}$ and $\lim_{x \to x_0} f(x) = L$, then $f(x_0) = L$.
- 4. (1 point) Describe the logical difference between the following two statements. (Note: simply stating that the quantifiers are rearranged is not sufficient. You should describe how that changes the logic of the statement.)

Statement 1: For all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in \mathbb{R}, |x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$.

Statement 2: For all $\varepsilon > 0$ and for all $y \in \mathbb{R}$, there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$.

Solution: In Statement 1, the same delta must work for all y. In Statement 2, it is possible that we require different deltas for different values of y.

- 5. (1 point) Determine the error in the following argument:
 - **Claim 1.** Every integer $n \in \mathbb{N}$ with n > 1, is divisible by a prime number p < n.

Proof. Let $n \in \mathbb{N}$ with n > 1. Let $S = \{k \in \mathbb{N} : 1 < k < n, \text{ and } k | n\}$. Since S is a subset of the natural numbers, it has a least element. Call that least element p.

I claim p must be prime. If not, then there exists an integer q with 1 < q < p such that q|p. Since p|n, there is an integer a such that n = ap, and since q|p, there is an integer b such that p = bq. Therefore, n = ap = abq. Since $ab \in \mathbb{Z}$, this shows that q|n and therefore $q \in S$. This contradicts our choice of p as the smallest element of S. Therefore p is prime, proving our claim.

Solution: The author didn't prove that S is nonempty. They are trying to use the fact that every nonempty subset of the natural numbers has a least element.