Name: \qquad

1. (1 point) T True or False: Every bounded sequence of real numbers has a convergent subsequence.
2. (1 point) \mathbf{F} True or False: If $\lim _{x \rightarrow x_{0}} f(x)=L$ and x_{0} is in the domain of f, then $f\left(x_{0}\right)=L$.
3. (1 point) Which of the following limits do not exist. Select all that apply.

$$
\begin{aligned}
& \sqrt{ } \lim _{x \rightarrow 0} \frac{1}{x} \\
& \sqrt{ } \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right) \\
& \bigcirc \lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right) \\
& \sqrt{ } \lim _{x \rightarrow 0} \sin ^{2}\left(\frac{1}{x}\right) \\
& \bigcirc \lim _{x \rightarrow 0} x
\end{aligned}
$$

4. (1 point) Fill in the blanks in the definition of a convergent sequence below:
"A sequence $\left\{a_{n}\right\}$ of real numbers converges to a real number A if \qquad $\varepsilon>0$, \qquad $N \in \mathbb{N}$ such that $n>N$ implies $\left|a_{n}-A\right|<\varepsilon . "$

Solution: A sequence $\left\{a_{n}\right\}$ of real numbers converges to a real number A if for all $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $n>N$ implies $\left|a_{n}-A\right|<\varepsilon$.
5. (1 point) Determine the error in the following argument:

Claim 1. The sequence $\left\{\sin \left(\frac{n}{2} \pi\right)\right\}_{n=1}^{\infty}$ converges.
Proof. Consider the subsequence $\{\sin (m \pi)\}_{m=1}^{\infty}$, namely the subsequence where $n=2 m$ is even. Since m is an integer and sine of integer multiplies of pi is always 0 , this sequence is identically 0 , which clearly converges.

Solution: The author only proved that a subsequence converges. They have not proven that the whole sequence converges.

