Name: _

- 1. (1 point) <u>**T**</u> True or False: Every bounded sequence of real numbers has a convergent subsequence.
- 2. (1 point) <u>**F**</u> True or False: If $\lim_{x\to x_0} f(x) = L$ and x_0 is in the domain of f, then $f(x_0) = L$.
- 3. (1 point) Which of the following limits do not exist. Select all that apply.
 - $\sqrt{\lim_{x \to 0} \frac{1}{x}}$ $\sqrt{\lim_{x \to 0} \sin(\frac{1}{x})}$ $\bigcirc \lim_{x \to 0} x \sin(\frac{1}{x})$ $\sqrt{\lim_{x \to 0} \sin^2(\frac{1}{x})}$ $\bigcirc \lim_{x \to 0} x$

4. (1 point) Fill in the blanks in the definition of a convergent sequence below:

"A sequence $\{a_n\}$ of real numbers converges to a real number A if $\varepsilon > 0$, ______ $N \in \mathbb{N}$ such that n > N implies $|a_n - A| < \varepsilon$."

Solution: A sequence $\{a_n\}$ of real numbers converges to a real number A if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that n > N implies $|a_n - A| < \varepsilon$.

5. (1 point) Determine the error in the following argument:

Claim 1. The sequence $\{\sin(\frac{n}{2}\pi)\}_{n=1}^{\infty}$ converges.

Proof. Consider the subsequence $\{\sin(m\pi)\}_{m=1}^{\infty}$, namely the subsequence where n = 2m is even. Since m is an integer and sine of integer multiplies of pi is always 0, this sequence is identically 0, which clearly converges.

Solution: The author only proved that a subsequence converges. They have not proven that the whole sequence converges.