Name: \qquad

1. (1 point) T True or False: Every bounded sequence of real numbers has a convergent subsequence.
2. (1 point) T True or False: A sequence of real numbers converges if and only if it is Cauchy
3. (1 point) F True or False: Every Cauchy sequence of rational numbers converge to a rational number.
4. (1 point) Fill in the blanks in the definition of a convergent sequence below:
"A sequence $\left\{a_{n}\right\}$ of real numbers converges to a real number A if \qquad $\varepsilon>0$, \qquad $N \in \mathbb{N}$ such that $n>N$ implies $\left|a_{n}-A\right|<\varepsilon . "$

Solution: A sequence $\left\{a_{n}\right\}$ of real numbers converges to a real number A if for all $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $n>N$ implies $\left|a_{n}-A\right|<\varepsilon$.
5. (1 point) Determine the error in the following argument:

Question 1. Is it true that there exists an even prime number? Prove your answer.
Proof. No, it is not true. A counterexample would be 3 , since 3 is prime but not even.

Solution: To disprove an existential statement, one must prove a universal statement. A counterexample will not suffice.

