	Name:
1.	(1 point) $\underline{\mathbf{T}}$ True or False: Every bounded sequence of real numbers has a convergent subsequence.
2.	(1 point) $\underline{\mathbf{T}}$ True or False: A sequence of real numbers converges if and only if it is Cauchy
3.	(1 point) $\underline{\textbf{F}}$ True or False: Every Cauchy sequence of rational numbers converge to a rational number.
4.	(1 point) Fill in the blanks in the definition of a convergent sequence below:
	"A sequence $\{a_n\}$ of real numbers converges to a real number A if $\varepsilon > 0$, $N \in \mathbb{N}$ such that $n > N$ implies $ a_n - A < \varepsilon$."
	Solution: A sequence $\{a_n\}$ of real numbers converges to a real number A if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $n > N$ implies $ a_n - A < \varepsilon$.
5.	(1 point) Determine the error in the following argument: Question 1. Is it true that there exists an even prime number? Prove your answer. Proof. No, it is not true. A counterexample would be 3, since 3 is prime but not even. □ Solution: To disprove an existential statement, one must prove a universal statement.
	A counterexample will not suffice.