Name: \qquad

1. (1 point) Which one of the following sequences does not converge?
$\bigcirc\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$
$\sqrt{ }\{\sqrt{n}\}_{n=1}^{\infty}$
$\bigcirc\left\{\frac{\sin n}{n}\right\}_{n=1}^{\infty}$
$\bigcirc\left\{\frac{\cos (n \pi)}{n^{2}}\right\}_{n=1}^{\infty}$
$\bigcirc\left\{\frac{2 n-6}{5 n+7}\right\}_{n=1}^{\infty}$
2. (1 point) T True or False: Every convergent sequence of real numbers is bounded.
3. (1 point) \mathbf{F} True or False: Every bounded sequence of real numbers is convergent.
4. (1 point) Fill in the blank in the definition below:
"A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers converges to $A \in \mathbb{R}$ iff for each $\varepsilon>0$, there is an $N \in \mathbb{N}$ such that for all $n>N$, \qquad ."

Solution: $\left|a_{n}-A\right|<\varepsilon$
5. (1 point) Determine the error in the following argument:

Claim 1. Every integer $n \in \mathbb{N}$ with $n>1$, is divisible by a prime number $p<n$.
Proof. Let $n \in \mathbb{N}$ with $n>1$. Let $S=\{k \in \mathbb{N}: 1<k<n$, and $k \mid n\}$. Since S is a subset of the natural numbers, it has a least element. Call that least element p.
I claim p must be prime. If not, then there exists an integer q with $1<q<p$ such that $q \mid p$. Since $p \mid n$, there is an integer a such that $n=a p$, and since $q \mid p$, there is an integer b such that $p=b q$. Therefore, $n=a p=a b q$. Since $a b \in \mathbb{Z}$, this shows that $q \mid n$ and therefore $q \in S$. This contradicts our choice of p as the smallest element of S. Therefore p is prime, proving our claim.

Solution: The author didn't prove that S is nonempty. They are trying to use the fact that every nonempty subset of the natural numbers has a least element.

