Name: \qquad

1. (1 point) Consider the statement " $\forall a, b$, if $a<b$, then $\exists c$ such that $a<c<b$." In which of the following number systems is that statement true? Select all that apply.
```
\(\sqrt{ } \mathbb{R}\)
\(\sqrt{ } \mathbb{Q}\)
\(\bigcirc \mathbb{N}\)
\(\sqrt{ } \mathbb{R}-\mathbb{Q}\)
\(\bigcirc \mathbb{Z}\)
```

2. (1 point) Which of the following is the negation of the statement "For each even integer n, there exists an integer k such that $n=2 k "$?
$\sqrt{ }$ There exists an even integer n such that for all integers $k, n \neq 2 k$.
\bigcirc For all odd integers, there exists an integer k such that $n \neq 2 k$.
\bigcirc There exists an odd integer n such that there exists an integer k with $n=2 k$.
\bigcirc For all even integers n and for all integers $k, n \neq 2 k$.
3. (1 point) T True or False: Between any two distinct real numbers, there is a rational number.
4. (1 point) Fill in the blanks in the statement of the least upper bound property below:
"Every \qquad set of \qquad numbers which is bounded above has a least upper bound."

Solution: "Every nonempty set of real numbers which is bounded above has a least upper bound."
5. (1 point) Determine the error in the following argument:

Claim 1. Let $n \in \mathbb{Z}$. If $n^{2}+2 n+4$ is divisible by 4 , then n is even.
Proof. Suppose $n \in \mathbb{Z}$ is even. Then there is an integer k such that $n=2 k$. So,

$$
n^{2}+2 n+4=4 k^{2}+4 k+4=4\left(k^{2}+k+1\right)
$$

Since $k^{2}+k+1 \in \mathbb{Z}$, this shows that $n^{2}+2 n+4$ is divisible by 4 .

Solution: This is a proof of the converse, which is not logically equivalent to the original statement.

