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1 Goal

The goal of this workshop is to construct the Cantor set and to prove some of its important
properties.

2 Construction

We construct the standard Cantor set as follows.
Define A0 = [0, 1], the closed interval from 0 to 1. Construct A1 by removing the open middle

third from A0. Namely,

A1 = [0, 1]−
(
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)
=
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]
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.

Construct A2 be removing the open middle thirds from each of the disjoint closed intervals
making up A1. Namely,

A2 =

([
0,

1

3

]
∪
[

2

3
, 1

])
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∪
[

2

9
,

1

3

]
∪
[

2

3
,

7

9

]
∪
[

8

9
, 1

]
.

We continue this process to construct a countably infinite number of sets A0, A1, A2, A3, . . ..
You should convince yourself of the following properties of these Ak:

• Each Ak is a finite union of disjoint closed intervals.

• For k ≥ 1, Ak ⊂ Ak−1.

Exercise 2.1. Construct A3, A4, and A5 explicitly. Write your answer as a union of disjoint
closed intervals.

We are now ready to define the cantor set.

Definition 2.1. The Cantor set is the set C defined by

C =

∞⋂
k=0

Ak

Exercise 2.2. Prove the following properties of the Cantor set.

1. C is a closed set.
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2. 0 ∈ C and 1 ∈ C.

3. C 6= [0, 1]

Exercise 2.3. Consider the set T

T =


∞∑
k=1

δk
3k

: δk ∈ {0.2}

 .

1. Prove that T ⊆ [0, 1].

2. Prove that T = C.

3 Properties: Size

Exercise 3.1. Prove that C is uncountable. Hint: You may find Exercise 2.3 and Cantor’s
diagonalization argument useful.

In the above exercise, you’ve shown that the Cantor set is as large as the whole real line.,
when we’re measuring size by cardinality. However, we could ”measure” our sets in a different
(but still reasonable) way, to see that the Cantor set is actually quite small.

In graduate real analysis, you would learn about measure theory. We won’t go into the
details here, but we will use some important properties of the standard measure on R, Lebesgue
measure.

Proposition 3.1. Let µ be Lebesgue measure. Then µ satisfies the following properties:

1. Let a < b. Then µ(a, b) = b− a.

2. Let A,B ⊆ R be disjoint. Then µ(A ∪B) = µ(A) + µ(B).

3. If A ⊆ B, then µ(A) ≤ µ(B).

4. If B ⊆ A, then µ(A−B) = µ(A)− µ(B).

5. Let A1 ⊇ A2 ⊇ A3 ⊇ · · · be a sequence of subsets of R. Suppose further that µ(A1) < ∞.
Then

µ

 ∞⋂
k=1

Ak

 = lim
k→∞

µ(Ak)

I should mention that it is possible to construct particularly bizarre subsets of R where
the above properties don’t work. However, we won’t come across those sets in this workshop.
Furthermore, the condition that needs to be checked for the above proposition is highly technical,
and I’m not going to get into that here.

Exercise 3.2. Use the above proposition to prove the following facts:

1. For every a ∈ R, µ({a}) = 0.

2. Let a < b. Then µ([a, b]) = b− a.
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Exercise 3.3. We will now use Lebesgue measure to explore how “big” the Cantor set is.

1. Compute µ(A1), µ(A2), and µ(A3).

2. Make a conjecture about a formula for µ(Ak). Then, prove it.

3. Compute µ(C), where C is the Cantor set.

4 Properties: Density

One of the bizarre properties of the Cantor set is that its points are simultaneously close together
and spread out.

Definition 4.1. A set A ⊆ R is called perfect if A is closed and every a ∈ A is an accumulation
point of A.

Roughly, a set is perfect if all of its points are close together. For example, any closed interval
is perfect.

Exercise 4.1. Prove that the Cantor set is perfect.

Definition 4.2. A closed set in R is nowhere dense if it doesn’t contain any nonempty, open
intervals.

Roughly, a set is nowhere dense if its points are spread out. For example, Z is nowhere dense.

Exercise 4.2. Prove that the Cantor set is nowhere dense.
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