Workshop 6

Chloe Wawrzyniak

Math 311 Spring 2018

1 Goal

The goal of this workshop is to practice proving limits of functions. We will also review sequences by exploring their properties and constructing counterexamples to false statements.

2 Limits of Functions

- 1. Let $f : \mathbb{R} \{0\} \to \mathbb{R}$ be defined by $f(x) = x \sin(\frac{1}{x})$. Prove that $\lim_{x \to 0} f(x) = 0$.
- 2. Suppose $g: \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x) = \begin{cases} x & x \text{ is rational} \\ 0 & x \text{ is irrational} \end{cases}$$

Prove that $\lim_{x \to 0} g(x) = 0.$

3. Let $D \subseteq \mathbb{R}$ and let x_0 be an accumulation point of D. Let $f: D \to \mathbb{R}$. Prove that if

$$\lim_{x \to x_0} f(x) = L$$

then for every sequence $\{a_n\}$ in D which converges to x_0 ,

$$\lim_{n \to \infty} f(a_n) = L$$

4. Suppose $D \subseteq \mathbb{R}$ and let x_0 be an accumulation point of D. Consider two functions $g, f : D \to \mathbb{R}$ such that

$$\lim_{x \to x_0} g(x) = 0$$

and f is bounded, in the sense that $\exists M > 0$ such that $|f(x)| \leq M$ for all $x \in D$. Prove that

$$\lim_{x \to x_0} g(x) f(x) = 0.$$

3 Sequence Review

Determine whether each of the following statements about sequences of real numbers is true or false. Then, give a proof or counterexample.

- 1. If $\lim_{n \to \infty} (a_n b_n) = 0$, then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.
- 2. If $a_n \to a$, then $|a_n| \to |a|$.
- 3. If $a_n \to a$ and $(a_n b_n) \to 0$, then $b_n \to a$.
- 4. If $a_n \to 0$, $a_n > 0$ for all n, and $|b_n b| < a_n$ for all n, then $b_n \to b$.
- 5. If $a_n \to a$, where a > 0 and $a_n > 0$ for all n, then $\sqrt{a_n} \to \sqrt{a}$.
- 6. If $\{a_n\}$ converges to a, then every subsequence also converges to a.
- 7. If $\{a_n\}$ is a sequence such that every proper subsequence converges, then $\{a_n\}$ also converges.
- 8. If $\{a_n\}$ is a monotone sequence with a convergent subsequence, then $\{a_n\}$ converges.
- 9. Every convergent sequence is Cauchy.
- 10. Every bounded sequence is convergent.
- 11. Every convergent sequence is bounded.
- 12. If $\{a_n\}$ is a Cauchy sequence, then so is $\{(-1)^n a_n\}$.
- 13. If $\{a_n\}$ is a bounded sequence and $\{b_n\}$ is a convergent sequence, then $\{a_nb_n\}$ converges.