Workshop 5

Chloe Wawrzyniak

Math 311 Spring 2018

1 Goal

The goal of this workshop is to explore the relationship between accumulation points of a set and limits/limit points of a sequence, and to introduce the notions of liminf and limsup.

2 Accumulation Points of a Set

Recall that for a set $S \subseteq \mathbb{R}$, an accumulation point for the set is a point $x \in \mathbb{R}$ such that every neighborhood of x contains infinitely many elements of S. It is worth noting that this definition is equivalent to saying that for all $\varepsilon>0$, the interval $(x-\varepsilon, x+\varepsilon)$ contains infinitely many elements of S.

1. How many accumulation points does a finite set have?
2. Find an uncountable set whose set of accumulation points is all of \mathbb{R}.
3. Find a countable set whose set of accumulation points is all of \mathbb{R}.
4. Construct a set with exactly two accumulation points.
5. Let $S \subset \mathbb{R}$ be nonempty. Suppose $x \in \mathbb{R}$ such that $\forall \varepsilon>0, S \cap(x-\varepsilon, x+\varepsilon)-\{x\} \neq \varnothing$.
(a) Prove that x is an accumulation point of S.
(b) Suppose we changed our assumption to say that $\forall \varepsilon>0, S \cap(x-\varepsilon, x+\varepsilon) \neq \varnothing$. Give an example to show that x may not be an accumulation point of S in this case.

3 Limit Points: Accumulation Points of a Sequence

For a sequence of real numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$, a limit point (sometimes called an accumulation point) of the sequence is a real number x such that there exists a subsequence $\left\{a_{n_{k}}\right\}$ that converges to x.

1. How many limit points does the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ have in each of the below cases?
(a) $a_{n}=1$
(b) $a_{n}=(-1)^{n}$
(c) a_{n} is the unique integer between 1 and 3 that is congruent to $n \bmod 3$.
(d) $a_{n}=100$ for $n=1, \ldots 100$, and $a_{n}=\frac{1}{n}$ for $n>100$.
2. Construct a sequence with one limit point.
3. Construct a sequence with no limit points.
4. Construct a sequence with infinitely many limit points.
5. Prove that a sequence of real numbers converges to x if and only if every subsequence converges to x.
6. Construct a sequence that has exactly one limit point, but which does not converge.
7. Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers and suppose $x \in \mathbb{R}$ is such that $\forall \varepsilon>0$, $\forall k \in J,\left\{a_{n}: n \geq k\right\} \cap(x-\varepsilon, x+\varepsilon) \neq \varnothing$. Show that x is a limit point of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$. Compare this to problem 5 in the first section.

4 liminf and limsup

Definition 4.1. The $\lim \sup$ of a sequence $\left\{a_{n}\right\}$, denoted $\limsup a_{n}$ or sometimes $\overline{\lim }_{n \rightarrow \infty} a_{n}$, is the supremum of the set of limit points of the the sequence. The liminf of a sequence $\left\{a_{n}\right\}$, denoted $\liminf _{n \rightarrow \infty} a_{n}$ or sometimes $\lim _{n \rightarrow \infty} a_{n}$, is the infemum of the set of limit points of the the sequence.
5. For this problem, we will investigate the sequence $\sin \left(\frac{\pi}{4}\right), \sin \left(\frac{\pi}{2}\right), \sin \left(\frac{3 \pi}{4}\right), \ldots \sin \left(\frac{n \pi}{4}\right), \ldots$.
(a) Write out the set of limit points for the sequence.
(b) What is $\limsup _{n \rightarrow \infty} \sin \left(\frac{n \pi}{4}\right)$?
(c) What is $\liminf _{n \rightarrow \infty} \sin \left(\frac{n \pi}{4}\right)$?
6. For this problem, we will investigate the sequence $1,-\frac{1}{2}, \frac{2}{3},-\frac{3}{4}, \ldots,(-1)^{n}\left(1-\frac{1}{n}\right), \ldots$
(a) Write out the set of limit points for the sequence.
(b) What is $\limsup _{n \rightarrow \infty}(-1)^{n}\left(1-\frac{1}{n}\right)$?
(c) What is $\liminf _{n \rightarrow \infty}(-1)^{n}\left(1-\frac{1}{n}\right)$?
7. Suppose $\left\{a_{n}\right\}$ is a sequence of real numbers satisfying $\limsup _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}$. How many limit points does the sequence $\left\{a_{n}\right\}$ have? Prove your answer.
8. Let $\left\{a_{n}\right\}$ be a bounded sequence of real numbers. Prove that the sequence converges if and only if $\limsup a_{n}=\liminf _{n \rightarrow \infty} a_{n}$. You may use the fact that a bounded sequence converges if and only if it has exactly one limit point.

5 Challenge Questions

For this section, let $\left\{a_{n}\right\}$ denote a bounded sequence of real numbers. Construct a new sequence $\left\{b_{k}\right\}$ defined by

$$
b_{k}=\sup _{n \geq k} a_{n}
$$

1. For each of the below sequences, find b_{1}, b_{2}, b_{3}, and a general term b_{k} of the sequence defined above.
(a) $a_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)$
(b) $a_{n}=\sin \left(\frac{2^{n} \pi}{8}\right)$
(c) $a_{n}=(-1)^{n}$
(d) $a_{n}=\frac{(5-n)(n-12)}{n^{3}}$ Hint: Look at the graph of $f(x)=\frac{(5-x)(x-12)}{x^{3}}$
2. Prove that for any bounded sequence $\left\{a_{n}\right\}$ of real numbers, the sequence $\left\{b_{k}\right\}$ converges.
3. Prove that $\limsup _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} b_{k}$.

Hint: You may find it useful to construct a subsequence $\left\{a_{n_{j}}\right\}$ which converges to the same limit as $\left\{b_{k}\right\}$.

