Workshop 3

Chloe Wawrzyniak

Math 311 Spring 2018

1 Goal

The goal of this workshop is to practice proving some properties of sequences of real numbers.

2 Properties of Sequences

1. In this problem, we explore what happens if we reverse the order of the quantifiers in our definition of converges of a sequence.

Definition 2.1. A sequence $\{x_n\}$ verconges to x if there exists an $\varepsilon > 0$ such that for all $N \in J$ it is true that $n \ge N$ implies $|x_n - x| < \varepsilon$.

- (a) Give an example of a vercongent sequence.
- (b) Is there an example of a vercongent sequence that is divergent?
- (c) Can a sequence verconge to two different values?
- (d) What exactly is being described in this strange denition?
- 2. Squeeze Theorem: Suppose $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$, and $\{c_n\}_{n=1}^{\infty}$ are sequences of real numbers such that for some $A \in \mathbb{R}$,

$$\lim_{n \to \infty} a_n = A \text{ and } \lim_{n \to \infty} b_n = A.$$

Suppose further that for all $n, a_n \leq c_n \leq b_n$. Prove that

$$\lim_{n \to \infty} c_n = A.$$

- 3. Prove that if $\{s_n\}_{n=1}^{\infty}$ is a convergence sequence of real numbers, then $\{|s_n|\}_{n=1}^{\infty}$ also converges. Is the converse true? Prove or give a counterexample.
- 4. Suppose $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ are two sequences of real numbers such that for some $A, B \in \mathbb{R}$,

$$\lim_{n \to \infty} a_n = A \text{ and } \lim_{n \to \infty} b_n = B.$$

Prove that

$$\lim_{n \to \infty} (a_n b_n) = AB.$$