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1 Goal

The goal of this workshop is to see and prove some important properties of the standard topology
of R.

2 Open and Closed Sets

Definition 2.1. A set G ⊆ R is called open if for all x ∈ G, there is some ε > 0 such that
(x− ε, x + ε) ⊆ G.

Definition 2.2. A set F ⊆ R is called closed if F c = R− F is open.

Exercise 2.1. 1. Prove that (0, 1) is open.

2. Prove that [0, 1] is closed.

3. Prove that [0, 1) is neither open nor closed.

Exercise 2.2. Prove that F ⊆ R is closed if and only if it contains all of its accumulation points.
In particular, this tells us that we could have defined a closed set as a set containing all of its

accumulation points, and nothing would have changed.

3 Closure, Interior, and Boundaries

Definition 3.1. Let S ⊆ R.

1. The closure of S, denoted S, is the union of S and the set of accumulation points of S.

2. The interior of S, denoted So, is defined as follows:

For x ∈ R and r > 0, let B(x, r) denote the interval of radius r centered at x, ie B(x, r) =
(x− r, x + r). Then

So = {x ∈ R : ∃r > 0 such that B(x, r) ⊆ S}

Exercise 3.1. Prove that for all S ⊂ R, S is closed and So is open.

Exercise 3.2. Prove that for any S ⊆ R, S is the smallest closed set containing S. By “small-
est”, I mean the following: for any closed set F containing S, S ⊆ F .

Formulate and prove an analagous statement for So.
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Exercise 3.3. Let S ⊆ R.

1. Prove that S is open if and only if S = So.

2. Prove that S is closed if and only if S = S.

Definition 3.2. For S ⊆ R, its boundary, denoted ∂S is defined as S ∩ Sc.

Exercise 3.4. Let S ⊆ R.

1. Prove that ∂S is closed.

2. Prove that S = ∂S ∪ S.

3. Prove that So = S − ∂S.

4 Definition of a Topology

We’ve been throwing around the word topology a lot these last few weeks, but we’ve only been
taking about it in the context of R. Topology has its own definition independent of the real
numbers, and is a subject of interest in its own right.

Definition 4.1. Let X be some set, and let T be some collection of subsets of X. Then we say
T is a topology on X if all of the following conditions hold:

1. ∅, X ∈ T

2. The union of artibrarily many elements of T is also an element of T (sometimes phrased
as “T is closed under arbitrary unions”)

3. The intersection of finitely many elements of T is also an element of T (sometimes phrased
as “T is closed under finite intersections”)

We call the pair (X,T ) a topological space. Sometimes, just say X is a topological space if
there is no chance for confusion about what T is.

Definition 4.2. If T is a topology on X, we call the sets in T open sets.

Exercise 4.1. Prove that the definition of open set in R that was given in section 1 defines a
topology on R.

The topology on R defined above is the standard topology on R. We could, however, have
defined other topologies with different, sometimes interesting, properties.

Exercise 4.2. For each of the Tk below, prove that it defines a topology on R.

1. T1 = {∅,R}. This is sometimes called the trivial topology.

2. T2 = P(R), the power set of R. This is sometimes called the discrete topology.

3. T3 = {U ⊆ R : U c is finite or is all of R}. This is sometimes called the finite comple-
ment topology.

For more examples, I suggest you take a look at Munkres’ topology book, sections 12 and 13.

The notion of a topology also makes sense in cases where X is not R.
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Exercise 4.3. Let X = {a, b, c}.

1. Let T1 = {X,∅, {a, b}, {b, c}, {b}, {c}}. Prove that this defines a topology on X.

2. Let T2 = {X,∅, {a}, {b}}. Prove that this does not define a topology on X.

Definition 4.3. Let T be a topology on X. We say that a subset of X is closed when its
complement is in T .

Exercise 4.4. Let T be a topology on X.

1. Prove that ∅ and X are closed.

2. Prove that an arbitrary intersection of closed sets is closed.

3. Prove that a finite union of closed sets is closed.

4. Construct an example using the standard topology of R to show that an infinite union of
closed sets may not be closed.

5 Continuous Functions

The definition of continuous functions that we’ve been working with so far depends on lim-
its. However, we can define what it means for a function to be continuous on a more general
topological space where limits may not make sense.

Definition 5.1. Let (X,TX) and (Y, TY ) be topological spaces. Let f : X → Y . We say that
f is continuous on X if for every O ∈ TY , we have that f−1(O) ∈ TX , ie the inverse image of
any open set is open.

Exercise 5.1. Prove that every constant function is continuous function. Namely, let f : X → Y
and suppose there exists y0 ∈ Y such that f(x) = y0 for all x ∈ X. Prove that f is continuous.
Hint: Consider two cases, depending on whether y0 ∈ O or not.

Exercise 5.2. Prove that our definition of a continuous function on R using limits is equivalent
to this definition.

Exercise 5.3. Suppose f : X → Y is continuous.

1. Prove that for every A ⊆ X, f(A) ⊆ f(A).

2. Prove that for every B ⊆ Y which is closed, f−1(B) is closed in X.

Exercise 5.4. Suppose f : R → R is continuous and suppose x0 is an accumulation point of
A ⊆ R. Must f(x0) be an accumulation point of f(A)? Prove or give a counterexample.

Exercise 5.5. Let X,Y , and Z be topological spaces. Suppose f : X → Y and g : Y → Z are
continuous. Prove that g ◦ f : X → Z is continuous.

Recall that one equivalent definition of a set being compact that we’ve looked at only relies
on the definitions of open and closed sets. So, we can define what we mean for a subset of a
general topological space to be compact.
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Definition 5.2. Let K ⊆ X. We say K is compact if for any collection {Oα}α∈A of open sets
in X such that

K ⊆
⋃
α∈A
Oα,

there is a finite sub-collection oα1
, . . . ,Oαm

such that

X ⊆
m⋃
j=1

Oαj .

Exercise 5.6. Suppose that f : X → Y is continuous. Prove that the image of a compact set is
compact. Namely, let K ⊆ X be compact and prove that f(K) is compact in Y .
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