Workshop 10

Chloe Wawrzyniak

Math 311 Section 01 Spring 2018

1 Goal

The goal of this workshop is to see and prove some important properties of the standard topology of \mathbb{R} .

2 Open and Closed Sets

Definition 2.1. A set $G \subseteq \mathbb{R}$ is called **open** if for all $x \in G$, there is some $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq G$.

Definition 2.2. A set $F \subseteq \mathbb{R}$ is called **closed** if $F^c = \mathbb{R} - F$ is open.

Exercise 2.1. 1. Prove that (0,1) is open.

- 2. Prove that [0,1] is closed.
- 3. Prove that [0,1) is neither open nor closed.

Exercise 2.2. Prove that $F \subseteq \mathbb{R}$ is closed if and only if it contains all of its accumulation points. In particular, this tells us that we could have defined a closed set as a set containing all of its accumulation points, and nothing would have changed.

3 Closure, Interior, and Boundaries

Definition 3.1. Let $S \subseteq \mathbb{R}$.

- 1. The closure of S, denoted \overline{S} , is the union of S and the set of accumulation points of S.
- 2. The **interior** of S, denoted S^o , is defined as follows:

For $x \in \mathbb{R}$ and r > 0, let B(x, r) denote the interval of radius r centered at x, ie B(x, r) = (x - r, x + r). Then

$$S^{o} = \{ x \in \mathbb{R} : \exists r > 0 \text{ such that } B(x, r) \subseteq S \}$$

Exercise 3.1. Prove that for all $S \subset \mathbb{R}$, \overline{S} is closed and S° is open.

Exercise 3.2. Prove that for any $S \subseteq \mathbb{R}$, \overline{S} is the smallest closed set containing S. By "smallest", I mean the following: for any closed set F containing S, $\overline{S} \subseteq F$.

Formulate and prove an analogous statement for S^{o} .

Exercise 3.3. Let $S \subseteq \mathbb{R}$.

- 1. Prove that S is open if and only if $S = S^{\circ}$.
- 2. Prove that S is closed if and only if $S = \overline{S}$.

Definition 3.2. For $S \subseteq \mathbb{R}$, its boundary, denoted ∂S is defined as $\overline{S} \cap \overline{S^c}$.

Exercise 3.4. Let $S \subseteq \mathbb{R}$.

- 1. Prove that ∂S is closed.
- 2. Prove that $\overline{S} = \partial S \cup S$.
- 3. Prove that $S^o = S \partial S$.

4 Definition of a Topology

We've been throwing around the word *topology* a lot these last few weeks, but we've only been taking about it in the context of \mathbb{R} . Topology has its own definition independent of the real numbers, and is a subject of interest in its own right.

Definition 4.1. Let X be some set, and let T be some collection of subsets of X. Then we say T is a **topology** on X if all of the following conditions hold:

- 1. $\emptyset, X \in T$
- 2. The union of artibrarily many elements of T is also an element of T (sometimes phrased as "T is closed under arbitrary unions")
- 3. The intersection of finitely many elements of T is also an element of T (sometimes phrased as "T is closed under finite intersections")

We call the pair (X,T) a topological space. Sometimes, just say X is a topological space if there is no chance for confusion about what T is.

Definition 4.2. If T is a topology on X, we call the sets in T open sets.

Exercise 4.1. Prove that the definition of open set in \mathbb{R} that was given in section 1 defines a topology on \mathbb{R} .

The topology on \mathbb{R} defined above is the **standard topology** on \mathbb{R} . We could, however, have defined other topologies with different, sometimes interesting, properties.

Exercise 4.2. For each of the T_k below, prove that it defines a topology on \mathbb{R} .

- 1. $T_1 = \{\emptyset, \mathbb{R}\}$. This is sometimes called the **trivial topology**.
- 2. $T_2 = \mathcal{P}(\mathbb{R})$, the power set of \mathbb{R} . This is sometimes called the **discrete topology**.
- 3. $T_3 = \{U \subseteq \mathbb{R} : U^c \text{ is finite or is all of } \mathbb{R}\}$. This is sometimes called the **finite comple**ment topology.

For more examples, I suggest you take a look at Munkres' topology book, sections 12 and 13.

The notion of a topology also makes sense in cases where X is not \mathbb{R} .

Exercise 4.3. Let $X = \{a, b, c\}$.

- 1. Let $T_1 = \{X, \emptyset, \{a, b\}, \{b, c\}, \{b\}, \{c\}\}$. Prove that this defines a topology on X.
- 2. Let $T_2 = \{X, \emptyset, \{a\}, \{b\}\}$. Prove that this does not define a topology on X.

Definition 4.3. Let T be a topology on X. We say that a subset of X is **closed** when its complement is in T.

Exercise 4.4. Let T be a topology on X.

- 1. Prove that \varnothing and X are closed.
- 2. Prove that an arbitrary intersection of closed sets is closed.
- 3. Prove that a finite union of closed sets is closed.
- 4. Construct an example using the standard topology of \mathbb{R} to show that an infinite union of closed sets may not be closed.

5 Continuous Functions

The definition of continuous functions that we've been working with so far depends on limits. However, we can define what it means for a function to be continuous on a more general topological space where limits may not make sense.

Definition 5.1. Let (X, T_X) and (Y, T_Y) be topological spaces. Let $f : X \to Y$. We say that f is **continuous** on X if for every $\mathcal{O} \in T_Y$, we have that $f^{-1}(\mathcal{O}) \in T_X$, if the inverse image of any open set is open.

Exercise 5.1. Prove that every constant function is continuous function. Namely, let $f : X \to Y$ and suppose there exists $y_0 \in Y$ such that $f(x) = y_0$ for all $x \in X$. Prove that f is continuous. Hint: Consider two cases, depending on whether $y_0 \in \mathcal{O}$ or not.

Exercise 5.2. Prove that our definition of a continuous function on \mathbb{R} using limits is equivalent to this definition.

Exercise 5.3. Suppose $f : X \to Y$ is continuous.

- 1. Prove that for every $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$.
- 2. Prove that for every $B \subseteq Y$ which is closed, $f^{-1}(B)$ is closed in X.

Exercise 5.4. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous and suppose x_0 is an accumulation point of $A \subseteq \mathbb{R}$. Must $f(x_0)$ be an accumulation point of f(A)? Prove or give a counterexample.

Exercise 5.5. Let X, Y, and Z be topological spaces. Suppose $f : X \to Y$ and $g : Y \to Z$ are continuous. Prove that $g \circ f : X \to Z$ is continuous.

Recall that one equivalent definition of a set being compact that we've looked at only relies on the definitions of open and closed sets. So, we can define what we mean for a subset of a general topological space to be compact. **Definition 5.2.** Let $K \subseteq X$. We say K is **compact** if for any collection $\{\mathcal{O}_{\alpha}\}_{\alpha \in A}$ of open sets in X such that

$$K \subseteq \bigcup_{\alpha \in A} \mathcal{O}_{\alpha},$$

there is a finite sub-collection $\wr_{\alpha_1}, \ldots, \mathcal{O}_{\alpha_m}$ such that

$$X \subseteq \bigcup_{j=1}^m \mathcal{O}_{\alpha_j}.$$

Exercise 5.6. Suppose that $f : X \to Y$ is continuous. Prove that the image of a compact set is compact. Namely, let $K \subseteq X$ be compact and prove that f(K) is compact in Y.