Name: _

- 1. (1 point) Which of the following sets are *compact*? Select all that apply.
 - $\bigcirc (0,1)$ $\checkmark [0,\infty)$ $\bigcirc (0,\infty)$
 - $\sqrt{[0,1]}$
 - V [0, -]
 - $\bigcirc (0,1]$
- 2. (1 point) <u>**F**</u> True or False: Every closed set is compact.
- 3. (1 point) <u>**T**</u> True or False: A continuous function on a compact set is uniformly continuous.
- 4. (1 point) Complete the statement of the Heiene-Borel Theorem below:

A subset of \mathbb{R} is compact if and only if it is _____ and _____

Solution: A subset of \mathbb{R} is compact if and only if it is **closed** and **bounded**.

5. (1 point) Determine the error in the following argument.

Claim 1. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous at every $x \in \mathbb{R}$. Then f is uniformly continuous.

Proof. Let $\varepsilon > 0$. For every $x \in \mathbb{R}$, there is a δ_x such that for all $y \in \mathbb{R}$ with $|y - x| < \delta_x$, $|f(y) - f(x)| < \varepsilon$.

Let $\delta = \min_{x \in \mathbb{R}} \delta_x$. Then, for all $x, y \in \mathbb{R}$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \varepsilon$. Hence, f is uniformly continuous.

Solution: There are an infinite number of δ_x , so the minimum may not exist. Furthermore, even if it does exist, there is no reason that it need be positive.