Name: \qquad

1. (1 point) Which of the following sets are closed? Select all that apply.
$\bigcirc(0,1)$
$\sqrt{ }[0, \infty)$
$\bigcirc(0, \infty)$
$\sqrt{ }[0,1]$
$\bigcirc(0,1]$
2. (1 point) \mathbf{F} True or False: Every closed set is bounded.
3. (2 points) For what $a \in \mathbb{R}$ does the limit $\lim _{x \rightarrow a}\lfloor x\rfloor$ exist where $\lfloor x\rfloor$ is the greatest integer less than or equal to x ? You do not need to provide a formal proof, but you must give some justification for your answer. (1 point for answer, 1 point for justification)

Solution: The limit exists if and only if $a \notin \mathbb{Z}$. At those points, the function jumps. (Drawing a graph is particularly helpful for this explanation)
4. (1 point) Determine the error in the following argument.

Claim 1. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers such that

$$
\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=0
$$

Then a_{n} and b_{n} converge to the same number.
Proof.

$$
0=\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty}\left(a_{n}\right)-\lim _{n \rightarrow \infty}\left(b_{n}\right) .
$$

Hence, by moving the last term to the left hand side, we have

$$
\lim _{n \rightarrow \infty}\left(a_{n}\right)=\lim _{n \rightarrow \infty}\left(b_{n}\right)
$$

Solution: We know that the limit of the sum (or difference) is the sum (or difference) of the limits as long as all of the limits exist. There is no assumption here that the limits need exist, so we cannot split the limit as was done in the first line of the proof.

