Name: _

- 1. (1 point) <u>**T**</u> True or False: Every bounded sequence of real numbers has a convergent subsequence.
- 2. (1 point) <u>**F**</u> True or False: If $\lim_{x\to x_0} f(x) = L$ and x_0 is in the domain of f, then $f(x_0) = L$.
- 3. (1 point) Which of the following limits do not exist. Select all that apply.
 - $\sqrt{\lim_{x \to 0} \frac{1}{x}}$ $\sqrt{\lim_{x \to 0} \sin(\frac{1}{x})}$ $\bigcirc \lim_{x \to 0} x \sin(\frac{1}{x})$ $\sqrt{\lim_{x \to 0} \sin^2(\frac{1}{x})}$ $\bigcirc \lim_{x \to 0} x$

4. (1 point) Fill in the blanks in the definition of a convergent sequence below:

"A sequence $\{a_n\}$ of real numbers converges to a real number A if $\varepsilon > 0$, ______ $N \in J$ such that n > N implies $|a_n - A| < \varepsilon$."

Solution: A sequence $\{a_n\}$ of real numbers converges to a real number A if for all $\varepsilon > 0$, there exists $N \in J$ such that n > N implies $|a_n - A| < \varepsilon$.

5. (1 point) Determine the error in the following argument:

Question 1. Is it true that there exists an even prime number? Prove your answer.

Proof. No, it is not true. A counterexample would be 3, since 3 is prime but not even. \Box

Solution: To disprove an existential statement, one must prove a universal statement. A counterexample will not suffice.