Name:

- 1. (1 point) Which one of the following is the correct *negation* of the definition of a sequence $\{a_n\}$ being Cauchy?
 - \bigcirc For every $\varepsilon > 0$, there is a positive integer N such that if $m, n \ge N$, then $|a_n a_m| < \varepsilon$.
 - \bigcirc There exists a $\varepsilon \leq 0$ such that for all positive integer N, if m, n < N, then $|a_n a_m| < \varepsilon$.
 - $\sqrt{}$ There exists a $\varepsilon > 0$ such that for all positive integers N, there exist $n, m \ge N$ such that $|a_n a_m| \ge \varepsilon$.
 - \bigcirc For every $\varepsilon > 0$, there is a positive integer N such that if $m, n \ge N$, then $|a_n a_m| \ge \varepsilon$.
- 2. (1 point) <u>T</u> True or False: Every Cauchy sequence of real numbers converges to a real number.
- 3. (1 point) <u>T</u> True or False: Every convergent sequence is Cauchy.
- 4. (1 point) Fill in the blanks in the statement of the Bolzano-Weierstrass Theorem below:

Solution: Every **bounded**, **infinite** set of real numbers has at least one accumulation point.

5. (1 point) Determine the error in the following argument:

Claim 1. For all $a, b \in J$, if $a^2|b^2$ then a|b.

Proof. Let $a, b \in J$ with $a^2|b^2$. Then, there exist an integer k such that

$$b^2 = ka^2.$$

Taking the square root of both sides, we get

 $b = \sqrt{k}a,$

which proves that a|b.

Solution: The definition of a|b requires \sqrt{k} to be an integer, which the author has not proven to be the case.