Name: _

- 1. (1 point) Consider the statement $(\forall a, b)$ $(a < b \Rightarrow (\exists c)a < c < b)$. In which of the following number systems is that statement true? Select all that apply.
 - $\sqrt{\mathbb{R}} \\ \sqrt{\mathbb{Q}} \\ \bigcirc \mathbb{N} \\ \sqrt{\mathbb{R} \mathbb{Q}} \\ \bigcirc \mathbb{Z}$
- 2. (1 point) Which of the following is the negation of the statement "For each even integer n, there exists an integer k such that n = 2k"?
 - $\sqrt{}$ There exists an even integer *n* such that for all integers *k*, $n \neq 2k$.
 - \bigcirc For all odd integers, there exists an integer k such that $n \neq 2k$.
 - \bigcirc There exists an odd integer n such that there exists an integer k with n = 2k.
 - \bigcirc For all even integers n and for all integers $k, n \neq 2k$.
- 3. (1 point) <u>T</u> True or False: Between any two distinct real numbers, there is a rational number.
- 4. (1 point) Fill in the blanks in the statement of the least upper bound property below:

"Every	set of	numbers
which is	bounded above has a least upper bound."	

Solution: "Every **nonempty** set of **real** numbers which is bounded above has a least upper bound."

5. (1 point) Determine the error in the following argument:

Claim 1. Let $n \in \mathbb{Z}$. If $n^2 + 2n + 4$ is divisible by 4, then n is even.

Proof. Suppose $n \in \mathbb{Z}$ is even. Then there is an integer k such that n = 2k. So,

$$n^{2} + 2n + 4 = 4k^{2} + 4k + 4 = 4(k^{2} + k + 1).$$

Since $k^2 + k + 1 \in \mathbb{Z}$, this shows that $n^2 + 2n + 4$ is divisible by 4.

Solution: This is a proof of the converse, which is *not* logically equivalent to the original statement.