Calculate the Fourier cosine series of \(f(x) \) defined by \(f(x) = x \) for \(-\pi \leq x \leq \pi \).

We proceed by integration by parts:
\[
\int_{-\pi}^{\pi} \sin(n \pi x) \cos(n \pi x) \, dx = -\frac{\sin(n \pi x) \sin(n \pi x)}{n \pi} \bigg|_{-\pi}^{\pi}.
\]

Thus, we have:
\[
\int_{-\pi}^{\pi} f(x) \cos(n \pi x) \, dx = \frac{1}{n \pi} \left(\sin(n \pi x) \sin(n \pi x) \right)_{-\pi}^{\pi}.
\]

This gives us the general form for the coefficients:
\[
a_n = \frac{2}{\pi} \int_{0}^{\pi} x \cos(n \pi x) \, dx.
\]

To find the Fourier cosine series, we need to calculate the coefficients \(a_n \) for all \(n \geq 1 \).

For even values of \(n \), we have:
\[
a_n = \frac{2}{\pi} \int_{0}^{\pi} x \cos(n \pi x) \, dx = \frac{2}{\pi} \left(\frac{\sin(\pi n \pi x)}{n \pi} \right)_{0}^{\pi} = 0.
\]

For odd values of \(n \), we have:
\[
a_n = \frac{2}{\pi} \int_{0}^{\pi} x \cos(n \pi x) \, dx = \frac{2}{\pi} \left(\frac{-\cos(\pi n \pi x)}{n \pi} \right)_{0}^{\pi} = \frac{2}{n \pi}.
\]

Thus, the Fourier cosine series is:
\[
f(x) = \sum_{n=1}^{\infty} \frac{2}{n \pi} \cos(n \pi x).
\]

Now, assume that the Fourier cosine series of \(f(x) \) converges to \(f(x) \) at any point of the interval \([0, \pi] \). Let us compute the limit:
\[
\lim_{n \to \infty} \int_{0}^{\pi} f(x) \cos(n \pi x) \, dx.
\]

We know that \(f(x) = x \) for \(x = 0 \), and in this case, the limit of the integral is zero.

To find the value of \(a_n \), we have:
\[
a_n = \frac{2}{\pi} \int_{0}^{\pi} x \cos(n \pi x) \, dx.
\]

For even values of \(n \), we have:
\[
a_n = \frac{2}{\pi} \left(\frac{\sin(\pi n \pi x)}{n \pi} \right)_{0}^{\pi} = 0.
\]

For odd values of \(n \), we have:
\[
a_n = \frac{2}{\pi} \left(\frac{-\cos(\pi n \pi x)}{n \pi} \right)_{0}^{\pi} = \frac{2}{n \pi}.
\]

Thus, the Fourier cosine series of \(f(x) \) is:
\[
f(x) = \sum_{n=1}^{\infty} \frac{2}{n \pi} \cos(n \pi x).
\]

Now, assume that the Fourier cosine series of \(f(x) \) converges to \(f(x) \) at any point of the interval \([0, \pi] \). Let us compute the limit:
\[
\lim_{n \to \infty} \int_{0}^{\pi} f(x) \cos(n \pi x) \, dx.
\]

We know that \(f(x) = x \) for \(x = 0 \), and in this case, the limit of the integral is zero.

Finally, we have:
\[
\int_{0}^{\pi} x \cos(n \pi x) \, dx = \frac{2}{\pi} \left(\frac{\sin(\pi n \pi x)}{n \pi} \right)_{0}^{\pi} = 0.
\]

And we have:
\[
\sin(\pi x) = \pi \sin(\pi x) \sin(x).
\]

Thus, we have:
\[
\sin(\pi x) = \pi \sin(\pi x) \sin(x).
\]

with \(\sin(x) \), we have:
\[
\sin(\pi x) = \pi \sin(\pi x) \sin(x).
\]
We consider the system of equations:

\[\begin{align*}
\frac{\partial x}{\partial t} &= f(x, t), \\
\frac{\partial y}{\partial t} &= g(x, t)
\end{align*} \]

with initial conditions:

\[\begin{align*}
x(t_0) &= x_0, \\
y(t_0) &= y_0
\end{align*} \]

1. We want to show whether \(x(t) \) is an equilibrium of the problem:

We need to solve for \(x(t) \) when \(t_0 = 0 \) with \(x(t_0) = 0 \).

2. We now search for position equilibrium \(X = P = \beta \).

3. We now search for position equilibrium \(X = P = \beta \).

4. We now search for position equilibrium \(X = P = \beta \).

5. Now search for position equilibrium \(X = P = \beta \).

The graphical resolution shows that \(\beta \) is a solution of the equations, with \(\beta = \ldots \).

For each \(\beta \), find the line \(\beta = \ldots \).

The equilibrium of the problem \(\beta \) of the form \(x(t) = \beta \), \(\ldots \)

with \(\beta \in \mathbb{R} \), \(\ldots \), with the associated equilibrium:

\[X(t) = \beta \]

We now investigate graphically:

\[\beta \]

\[x(t) = \ldots \]

\[y(t) = \ldots \]
1) Let us compute a slice of the heat flow between a and b at t.

The total energy in the slice is:

\[\frac{\partial E}{\partial t} = - \int_{f}^{b(t)} \phi(x) \, dx \]

and the energy leaving at time \(t \) is:

\[\int_{a}^{b(t)} \frac{dE}{dt} \, dx \]

Thus,

\[\frac{dE}{dt} = - \int_{f}^{b(t)} \phi(x) \, dx - \int_{a}^{b(t)} \frac{dE}{dt} \, dx \]

in flux.

2) Suppose that the equilibrium temperature does exist.

Then:

\[\frac{dE}{dt} = - \int_{f}^{b(t)} \phi(x) \, dx \]

and there is an equilibrium with respect to \(x \).

Therefore, the sum of the work done on the system and the work done on the surroundings is zero.

We have:

\[\int_{a}^{b(t)} \frac{dE}{dt} \, dx = 0 \]

the equilibrium temperature is \(\theta \).

3) We wish to find the equilibrium state of the system.

Thus:

\[\frac{dE}{dt} = - \int_{a}^{b(t)} \phi(x) \, dx \]

and there is an equilibrium state.

We have:

\[\int_{a}^{b(t)} \frac{dE}{dt} \, dx = 0 \]

the equilibrium temperature is \(\theta \).

4) Is \(\theta \) a real solution of the problem?

For \(\theta \) to be a real solution of the problem, there should exist \(x \) such that:

\[\frac{dE}{dt} = - \int_{a}^{b(t)} \phi(x) \, dx \]

and:

\[\int_{a}^{b(t)} \frac{dE}{dt} \, dx = 0 \]

Thus, \(\theta \) is a real solution of the problem.

5) For \(\theta = \beta^2 \) to be an equilibrium, one should have:

\[\int_{a}^{b(t)} \frac{dE}{dt} \, dx = 0 \]

As in the previous case, there is no equilibrium at \(\theta = \beta^2 \).

6) For \(\theta = \beta^2 \), it is an equilibrium, and there should exist \(x \) such that:

\[\int_{a}^{b(t)} \frac{dE}{dt} \, dx = 0 \]

there is no equilibrium at \(\theta = \beta^2 \).

7) For \(\theta = \beta^2 \), the temperature at \(T(t) \) associated to \(\phi(x) \) is:

\[T(t) = \frac{\beta^2}{\phi(x)} \]

The solution for a general solution in the system reader:

\[\frac{dE}{dt} = \sum_{i=1}^{n} \phi(x) \]

We obtain that \(\theta = \beta^2 \) is the temperature at \(x = 2 \text{ m} \) of the equilibrium state.

Thus, it is a possible state of the system, as it represents a possible equilibrium temperature.