Exercise 1

Let $a < b$ be two real numbers, and $f : (a, b) \to \mathbb{R}$ be an increasing function, that is:
\[\forall x, y \in \mathbb{R}, \ x \leq y \Rightarrow f(x) \leq f(y). \]
We also assume that f is bounded over (a, b).

1. Give an example of such a bounded and increasing function defined over some interval $(a, b) \subset \mathbb{R}$ of your choice.
2. Recall the proof (seen during the lectures) of the following fact:
 ‘If $\{a_n\}$ is an increasing sequence of real numbers which is bounded from above, then it is convergent.’
3. Why do the following supremum and infimum exist:
 \[\inf (\{f(x), x \in (a, b)\}), \sup (\{f(x), x \in (a, b)\})? \]
 in the following, they are denoted as m and M respectively.
4. Drawing inspiration from the answer to (2), show that f has limit M at b and limit m at a.

Exercise 2

1. Show that, for any real numbers x, y, one has:
 \[\min(x, y) = \frac{x + y - |x - y|}{2}, \text{ and } \max(x, y) = \frac{x + y + |x - y|}{2}. \]
2. Let $D \subset \mathbb{R}$, and $f : D \to \mathbb{R}$. Define the maximum function $\max(f, g)$ as:
 \[\forall x \in D, (\max(f, g))(x) = \max(f(x), g(x)), \]
 and similarly for the minimum function $\min(f, g)$. Infer from (1) that, if f and g are two continuous functions on D, then so are $\min(f, g)$, $\max(f, g)$.