Exercise 0:

(1) Let D be a subset of \mathbb{R}, and $x_0 \in D$. Let $f : D \to \mathbb{R}$ be continuous at x_0, and such that $f(x_0) \neq 0$. Show that there exists a neighborhood Q of x_0 such that:

$$\forall x \in D \cap Q, \ f(x) \neq 0.$$

(2) Define precisely the notion of a uniformly continuous function f on a subset $D \subset \mathbb{R}$.

(3) Let $D \subset \mathbb{R}$, and $x_0 \in D$ be an accumulation point of D. Prove that, if $f, g : D \to \mathbb{R}$ are two functions which are differentiable at x_0, then so is their product fg, and provide its derivative.

(4) Let $D \subset \mathbb{R}$, $x_0 \in D$, and consider a function $f : D \to \mathbb{R}$. Express, in terms of quantifiers, what it means for f not to be continuous at x_0.

(5) Recall the definition of a compact set; then, state the Heine-Borel theorem.

(6) Let $D \subset \mathbb{R}$, and $f : D \to \mathbb{R}$ be a function; prove that, if f is uniformly continuous on D, then it is continuous at any point $x_0 \in D$.

(7) State Rolle’s theorem.

(8) State the intermediate-value theorem.

(9) State the mean-value theorem.

(10) State the theorem of sequential characterization of the limit of a function at a point.

Exercise 1:

(1) State the theorem around sequences of elements lying in a compact set $K \subset \mathbb{R}$.

(2) Show that the interval $A = [0, 2)$ is not compact by finding a sequence $\{x_n\}$ of elements of A which does not satisfy the criterion stated in (1).

(3) State the definition of a compact subset of \mathbb{R}.

(4) Show that this interval is not compact by using only the definition of compactness.

(5) Show that this interval is not compact by using the Heine-Borel theorem.

Exercise 2:

f, g continuous on $[0, 1]$, such that:

$$0 < f(x) < g(x).$$

Show that $h = f/g$ is well-defined and continuous. Show that its image is in $(0, 1)$. Show that there exist m, M st

$$mg \leq f \leq Mg.$$

Exercise 3:

Let $a < b$ be two real numbers, and let $f : [a, b] \to \mathbb{R}$ be a function which is continuous on $[a, b]$ and differentiable on (a, b). Assume in addition that there exists a real number $M > 0$ such that, for all $x \in (a, b)$:

$$|f'(x)| \leq M.$$

Show that, for all $x, y \in [a, b]$, one has:

$$|f(x) - f(y)| \leq M|x - y|.$$

Exercise 4:

(1) Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be the function defined by:

$$\forall x \neq 0, \ f(x) = \frac{\sin(x)}{x}.$$

Show that f has a limit at 0 and calculate this limit.
(2) Let \(g : \mathbb{R} \setminus \{0\} \to \mathbb{R} \) be the function defined by:
\[
\forall x \neq 0, \quad f(x) = \frac{\cos(x) - 1}{x}.
\]
Show that \(f \) has a limit at 0 and calculate this limit.

Exercise 5:
Let \(f : [0, 2] \to \mathbb{R} \) be the function defined by:
\[
f(x) = |x - 1|.
\]
Show that \(f(0) = f(2) \), but that there does not exists any \(c \in [0, 2] \) such that \(f'(c) = 0 \). Why does it not come in contradiction with Rolle’s theorem?

Exercise 6:
By using the mean-value theorem, show that:
1. For any real numbers \(0 < a < b \), one has the inequality:
\[
\frac{1}{b} < \frac{\log(b) - \log(a)}{b - a} < \frac{1}{a}.
\]
2. For all \(x > 0 \), one has:
\[
\frac{1}{x + 1} < \log(1 + x) - \log(x) < \frac{1}{x}.
\]

Exercise 7:
The purpose of this exercise is to provide an alternative proof of the Heine theorem. Let \(K \subset \mathbb{R} \) be a compact set, and let \(f : K \to \mathbb{R} \) be a continuous function. The proof goes by a contradiction argument.

1. Negate the definition of uniform continuity for \(f \).
2. Show that, if \(f \) is not uniformly continuous on \(K \), then there exist \(\varepsilon > 0 \), as well as two sequences \(\{x_n\} \) and \(\{y_n\} \) of elements of \(K \) which satisfy the following properties:
\[
\forall n \in \mathbb{N}^*, \ |x_n - y_n| < \frac{1}{n}, \text{ and } |f(x_n) - f(y_n)| > \varepsilon.
\]
3. Show that there exist two subsequences \(\{x_{n_k}\} \) and \(\{y_{n_k}\} \) of \(\{x_n\} \) and \(\{y_n\} \) respectively, which converge to a common limit \(\alpha \in K \).
4. End the proof by obtaining a contradiction between this fact and the properties of Question (2).

Exercise 8:
1. Is the function \(f(x) = \frac{1}{x^2} \) uniformly continuous on \((0, +\infty)\)? In any case, prove your answer.
2. Is it true that, if \(f : [0, 1] \to \mathbb{R} \) is a continuous function such that, for all \(x \in [0, 1] \), \(f(x) \neq 0 \), then \(g(x) = \frac{1}{f(x)} \) is a uniformly continuous function? If your answer is yes, prove it; else, provide a counterexample.

Exercise 9:
Let \(I \) be an interval of \(\mathbb{R} \), \(f, g : I \to \mathbb{R} \) be two continuous functions such that:
\[
\forall x \in I, \ |f(x)| = |g(x)| \neq 0.
\]
Show that, either
\[
\forall x \in I, \ f(x) = g(x),
\]
or
\[
\forall x \in I, \ f(x) = -g(x).
\]

Exercise 10:
Let \(a < b \) be two real numbers, and \(f : [a, b] \to \mathbb{R} \) be a function such that \(f \) is differentiable on \((a, b)\), and:
\[
\forall x \in [a, b], \ f(x) > 0.
\]
Show that there exists \(c \in (a, b) \) such that:

\[
\frac{f(a)}{f(b)} = e^{(b-a)\frac{f'(c)}{f(c)}}.
\]