Given a holomorphic or Hecke-Maass cusp form f, convexity principle implies the growth rate, $L(1/2 + it, f) \ll (1 + |t|)^{1/2+\epsilon}$ on the critical line. This was first improved for holomorphic cusp forms of level 1 by Good to the Weyl-type bound, $L(1/2 + it, f) \ll (1 + |t|)^{1/3+\epsilon}$. We apply a simple circle method by uniformly partitioning the circle, along with Voronoi formula and stationary phase analysis to prove the Weyl-type bound for a L-function of a holomorphic or a Hecke-Maass cusp form of any level and nebentypus.